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Abstract—Cyber-physical systems are critical infrastructures
that are crucial both to the reliable delivery of resources such as
energy, and to the stable functioning of automatic and control
architectures. These systems are composed of interdependent
physical, control and communications networks described by
disparate mathematical models creating scientific challenges
that go well beyond the modeling and analysis of the individual
networks. A key challenge in cyber-physical defense is a
fast online detection and localization of faults and intrusions
without prior knowledge of the failure type. We describe
a set of techniques for the efficient identification of faults
from correlations in physical signals, assuming only a minimal
amount of available system information. The performance of
our detection method is illustrated on data collected from a
large building automation system.

1. Introduction

Cyber-physical systems are physical networks, governed
by the laws of physics, but regulated by a control system
coupled to computer networks that transmit the information
required to optimize and control the physical networks
for reliability and efficiency [1], [2]. Examples include,
but are not limited to, smart grids, gas pipelines, civil
infrastructures, autonomous automotive systems, automatic
pilot avionics and process control systems. The interde-
pendence of the cyber and physical networks makes the
combined system more vulnerable to attacks; manipulation
of the computer control network can leverage cyber-physical
capabilities to cause damage or significantly degrade the
performance of the critical infrastructure [3], [4].

The ability to detect and localize failures or attacks
represents an important step towards the design of resilient
cyber-physical networks and strategies for implementation
of certificates for proportional response. It is natural to
expect that indications of intrusion or misbehavior in the
cyber subsystem are present as anomalies in the physical
network. This fact can be used for searching for outliers
in the data streams collected by the sensors monitoring the
state of the physical system – a well-studied problem in a
wide range of application domains [5]. Although anomalous
changes in individual signals can be an indication of a
major failure or a crude attack, they do not capture more

sophisticated scenarios of coordinated intrusions. Therefore,
it is important to take into account information from the
spatiotemporal correlations of anomalies of individual sig-
nals. Exploiting these correlations might enable probabilistic
localization of the intruder or failure within the network, and
hence serve as a basis for building a proper response.

We study the problem of detection and localization
of disturbances based on the analysis of spatiotemporal
correlations between physical data streams. Our goal is to
develop efficient methods for the detection and localiza-
tion of failures within the cyber-physical system without
reference to a predefined attack vector. Failure events can
be very diverse, while attacks become more and more
creative and sophisticated, so the detection methodologies
cannot be based on scripted scenarios. In addition, detection
methodologies which do not exploit prior knowledge of the
topology of the physical network will have a broader range
of application. Therefore, we deliberately do not incorporate
any specific aspects of the physical system architecture
in the algorithm design. Further desired requirements for
detection and localization algorithms include scalability (the
number of signals and time measurements can potentially be
very large), generality (the signals are heterogeneous and of
diverse nature), robustness (the signals can be noisy and
incomplete) and low computational complexity (to allow
deployment of the algorithm in a fast online fashion).

Cyber-physical intrusion detection and response method-
ologies will improve at much faster rates when the de-
velopment and refinement is closely coupled with real-
world experimentation that validates strengths and reveals
weaknesses. The simplicity and generality of the detection
algorithms are very important since they will allow for de-
ployment in different cyber-physical systems. In this paper,
we test our techniques on specific real-world data from an
automated HVAC system in a large office building at Los
Alamos National Laboratory (LANL).

We present a general protocol for detection and localiza-
tion of disturbance which meet most of the aforementioned
requirements. First, we develop a simple procedure for
constructing a special correlation matrix out of detrended
heterogeneous signals, making some assumptions on the
anomaly signature we would like to be able to capture.
Then, we use the correlation matrix to solve three crucial
tasks: i) detection of the anomaly using spectral methods;
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ii) localization of a subset of anomalous nodes within
the system using low-rank approximations and biclustering
methods; iii) finally, identification of the functional role of
the inferred anomaly based on the sensor labels. We validate
our framework on experimental real-world data collected
from a building automation system at LANL.

2. Time Series Analysis and Correlation Ma-
trix Construction

We consider the problem involving data from N physical
sensors indexed by V . For each sensor i ∈ V we are given
a time series Xi(t) collected at times t ∈ T . The data Xi(t)
can be heterogeneous real or integer valued signals and
provides a (partial) description of a system. We assume that
the spatial and temporal relationships between the sensors
are unknown, but that we do have access to sensor labels.
We also assume that the fluctuations of each time series
in the system around their mean behavior during normal
operations are essentially independent; this assumption is
correct if the sensors are weakly coupled.

Formally, we say that during normal operations the
observations Xi(t) can be modeled as

Xi(t) = Yi(t) +Ni(t) + Si(t), (1)

where the Ni(t) represent the uncorrelated random noise,
Si(t) is a potential signal of attack or failure (correlated
between sensors) which is absent during normal operations,
and Yi(t), which we call the trace, describes the idealized
operation of the system without noise. When the system
is attacked or experiences a fault the affected parts of the
system U ⊂ V are expected to move away from the trace,
Si(t) 6= 0 for i ∈ U . We are interested in those cases when
the signal is nonzero for a significant subset of sensors.
It may occur that the signal-to-noise ratio is sufficiently
low so that for each individual sensor the failure signal
is not directly observable, but that it can be detected and
becomes statistically significant when the subset of affected
sensors are taken into account collectively. In these cases,
the differences between the trace and the corresponding
observations will become related. In other words, since the
Si(t) values corresponding to a particular disturbance event
are likely to be correlated, we expect that the correlation
relations will become apparent in the detrended signals
Xi(t) − Yi(t) if the signal (e.g. attack or failure) occurs
at t = τ and lasts for T time steps. Our goal is to construct
a suitable correlation matrix out of these time series which
will enable the detection and localization of the undesirable
changes in system state.

2.1. Detrending the Signals

Unfortunately, the traces Yi(t) are a priori unknown.
In some cases they can be learned from an ensemble
of repeating operations under normal behavior, but here
we assume that this data might be unavailable. Thus we
approximate the traces with a running mean, X̄i(t) :=

1
τav

∑t+τav/2
t′=t−τav/2

Xi(t
′), centered at t. This is a reasonable

assumption if the traces Yi are fairly smooth; however, this
will not be a good assumption if the system changes modes
of operation or otherwise undergoes rapid changes within
the interval [t− τav/2, t+ τav/2].

Note that although the use of the centered running mean
requires the knowledge of the signal in the future, we found
that it produces better results with respect to the approach
where the trailing mean is employed. At the same time, an
online detection algorithm based on the centered mean will
have a time-lag of τav/2. There is hence a trade off between
the quality of approximation and the speed of detection.

It seems intuitive that the choice of smaller τav would
introduce a smaller time-lag, and thus would lead to better
results. On the other hand, τav should be large enough to
average out the small fluctuations caused by the terms Ni(t).
A similar argument implies that τav should be chosen to
be close in size to the expected duration of an attack or
fault signal one would like to be able to detect: if τav is
much larger than this scale, the signal will be likely to be
averaged out. In practice, there is often a range of reasonable
choices for the length τav of the sliding window; one should
choose the one which satisfies the requirements on a desired
maximum time-lag of detection.

2.2. Construction of the Correlation Matrix

We calculate correlation matrices from the residuals (an
example is depicted in Figure 1) of the detrended data
streams Ri(t) := Xi(t) − X̄i(t). At this point, one more
parameter, the time interval τcorr over which correlations
are calculated, must be chosen. Ideally, this time window
should be at least as large as the duration of the event
we would like to detect. This time length, in general, is
application dependent; typically, we are interested in the
time scales which are a low multiple of τav. Thus, we
calculate the standard Pearson correlation coefficient ξij(t)
for each pair of residuals Ri(t), Rj(t) over the correlation
window [t−τcorr, t] of length τcorr. This gives us the desired
correlation matrix Mij(t) = ξij(t) at each time instance.
We are not interested in detecting the self-correlations which
are trivially equal to one, so we put by definition ξii(t) = 0
∀i ∈ V .With our setup under normal operations, when the data
streams can be modeled as in Equation (1) with Si(t) = 0,
we expect the detrended data streams to be uncorrelated,
∀i 6= j, E[ξij(t)] = 0. However, during an attack or failure
we expect there to be a set of sensors U ⊂ V such that
Si(t) 6= 0 for i ∈ U , and hence

∀r 6= s, r, s ∈ U, E[ξrs(t)] = σrs > 0, (2)

since the non-zero signals Si(t), i ∈ U of the attack are
supposed to have a similar behavior.

3. Detection and Localization of Anomalous
Submatrix

In this section, we present a protocol for detecting
and localizing a group of anomalously behaving devices
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Figure 1. Three residuals R from a typical signal stream. Signal (a) has
S(t) = 0 while signals (b) and (c) have correlated S(t) 6= 0 due to
an attack or failure. The attack starts at approximatly 11:00 and some
correlation can be observed between (b) and (c). The goal is to find and
identify such correlated signals among the many recorded signals.

within the physical network. Formulating the problem in
the framework of submatrix localization, the detection step
is done by monitoring the spectral gap in the correlation
matrix spectrum. This method is universal and does not
require any prior assumptions on the form of the noise and
on particular normalization of the correlation matrix. We ex-
plore three approaches to the localization of the anomalous
nodes: sparse PCA based on a low-rank approximation, and
two biclustering methods for finding a submatrix with an
elevated mean value.

3.1. Detection of Anomalous Submatrix

Under normal conditions and low noise, the correlation
matrix of the physical system might contain some structural
information about the topology of the system. For instance,
we can expect communities representing common functional
roles or spatial locations of devices to have strong corre-
lations. All other matrix elements should appear as noisy
and uncorrelated values fluctuating around zero. When an
anomaly occurs under the assumptions of Section 2 with a
strong enough signal, one should witness the emergence of
one single submatrix with a higher mean value. As in the
problem of detecting a single community in a graph [6],
the change in the correlation matrix induced by the anoma-
lous signal should be also visible in the spectrum of the
correlation matrix. In the ideal case, if the community is
large enough, there is a spectral gap between the first and
the second largest eigenvalues, and in addition, the principle
eigenvector contains information about the location of the
community. We use the idealized case to gain intuition about
the behavior of the real world system.

This intuition for the correlation matrices constructed
from the real signals comes from rigorous analysis for ideal
noise, which also illustrates the concept of a “sufficiently
strong signal” used above. As an example, consider a rank-

1 matrix with eigenvalue θ, P = θuuT , and suppose that
we observe this matrix corrupted by a noise taking the
form of a normalized N ×N Gaussian Wigner matrix W ,
with zero-mean elements and variance of the off-diagonal
elements equal to 1/N2. It is well known that the spectrum
of W converges to the semi-circle law with support [−2, 2].
Let us denote the largest eigenvalue of the measurement
matrix P + W as λ1, and the associated eigenvector as
u1. Depending on the “signal strength” θ, the values of λ1
and u1 undergo a phase transition [7]. If θ > 1, then in
the large N limit λ1 → 1 + 1/θ is clearly separated from
the bulk, and |〈u, u1〉| → 1 − 1/θ2. In the opposite case
θ ≤ 1, λ1 → 2 and the associated eigenvector does not
carry any useful information, being completely degraded by
the noise, with |〈u, u1〉| → 0. Similar results hold for the
case of multiplicative noise.

The important question is how to decide whether the
gap between the two largest eigenvalues ∆1 = λ1 − λ2 is
statistically significant. The challenge here is that we do not
assume any prior information on the statistics of the trace
and on the noise distribution; this setting has not been well
studied in the literature so far. To address this question, we
suggest the following detection criterion. Let ∆i = λi−λi+1

be the collection of spacings between successive eigenvalues
of the correlation matrix. Following the assumption that the
nonzero values of all eigenvalues but the largest one are
entirely due to a random noise, we can empirically estimate
the corresponding characteristic noise scale as

δ =

√
1

N − 2

∑
1<i<N

∆2
i . (3)

Now our proposed detection certificate is as follows: we
consider that the first eigenvalue is statistically well sepa-
rated if

∆1 > ∆2 + δ. (4)

We count the opposite case as an absence of detection. The
validity of this detection criterion will be checked in the
Section 4 involving real data examples.

3.2. Localization Using the Low-rank Approxima-
tion

Once the detection certificate presented in Subsection 3.1
yields a positive result, the next step is to localize the
anomalously correlated elements of the system. The K
communities detection problem is often addressed using
the low rank approximation [8]. In our case, a significant
spectral gap ∆1 indicates that the hidden matrix can be
localized by looking at the best rank 1 approximation M̂
of the initial matrix M ,

M̂ = arg min
M̂
‖M − M̂‖F s.t. rank(M̂) = 1, (5)

where ‖ · ‖F is the Frobenius norm. The solution to this
problem is well-known and is given by the singular value
decomposition (SVD) of the matrix M , from which we re-
tain only the leading singular value σ and the corresponding
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singular vector q [9]: M̂ = σqqT . Unfortunately, in general
the resulting vector q is not sparse, which does not allow us
to identify the location of the anomalous nodes. Ideally, for
detecting a group containing k anomalous nodes, we would
like to obtain a vector with only k nonzero components,
indicating their positions; this problem is often referred
to as sparse PCA [10]. While under a general low-rank
assumption this problem is NP-hard, for the special case
of rank 1 it can be solved analytically simply by sorting the
elements of q, and retaining only k largest elements [11],
[12], resulting in a k-sparse vector that we denote as qk.
The constant in the expression for M̂ is then simply given
by σk = qTkMqk.

Another difficulty comes from the fact that a priori we
do not know the size of the anomalous module. Sometimes,
in order to find the optimal value of k, the so-called elbow
method can be used [13]. The idea is fairly simple; find
the minimal k such that the quality of approximation εk ≡
‖M−σkqkqTk ‖F is not increased “too much” when we make
a step from k to k+1. More precisely, the optimal k is given
by the minimal k such that εk − εk+1 < ε, where ε is some
small constant, and the only parameter of the algorithm.
The total complexity of the method is dominated by the
complexity of the SVD-decomposition and is O(N3) in the
most general case.

We expect the nonzero values of qk for the optimal k to
indicate the location of the nodes producing anomalous cor-
relations. However, in the examples involving real data, the
cusp on the elbow diagram might be not very pronounced
in hard cases, therefore, in practice it can be unclear how to
select an appropriate ε. At the same time it should be noted
that at the end of the day we are not necessarily interested
in inferring the whole set of anomalous nodes, but rather
in understanding the cause of the anomaly. In this sense,
one can choose to infer only a subset of anomalous sensors,
but requiring a high level of confidence for this localization
task; then the idea is to search for a subset of k∗ strongly
correlated nodes. However k∗ can not be arbitrary small.
Indeed, even in the idealized case there exist a practically
achievable lower bound on the size of detectable community
[14], [15] k &

√
N . That is why the final suggested strategy

consists in searching for a subset of most correlated sensors
of size k∗ =

√
N , and then in analyzing the corresponding

group of devices using the tag data for determining the
cause of the anomaly. This approach will be used in our
experimental tests in Section 4, where an empirical evidence
for the algorithmic failure in detection of communities of
very small size will be presented.

3.3. Localization via Biclustering Methods

In this part we discuss two efficient algorithms for
localization of the anomalous subgraph of the physical
network, which do not explicitly use the rank 1 assumption,
but instead attempt to find a k × k submatrix with an
elevated mean. The first one, called Large Average Sub-
matrix (LAS), has been introduced in [16] and analyzed

in Ref. [17], and consists in consecutive updates of k rows
and k columns, starting from a random k×k submatrix and
repeating the updates until a guaranteed convergence to a
local maximum, meaning that the resulting submatrix can
not be improved by changing only its column or row set.
A recently introduced improved version of this algorithm,
analysed in [18] and named Iterative Greedy Procedure
(IGP) follows a simple greedy scheme: starting by one
randomly chosen row, we add the best columns and rows
sequentially until a k × k submatrix is recovered. This
algorithm outputs a provably better results, at least in the
case of large Gaussian random matrices. In what follows,
we test the performance of these algorithms on a real data
set as a part of the localization procedure for finding the
anomalously behaving group of nodes.

In order to get the best resulting submatrix, we use a
multi-start procedure, initializing both algorithms L times
for given k, and retain the most significant submatrix. As
before, the size of the hidden subgraph k is unknown. In
this case, again, we use k∗ =

√
N in order to find a

smaller submatrix, representing the nodes which belong to
the anomalous group of devices. The complexity of the
overall algorithm based on this approach is dominated by
the complexity of the localization step, and is equal to
O(N3) for the low-rank algorithm, to O(ILN lnN) for
LAS and to O(2k∗LN lnN) for IGP , where I is the
number of iterations needed for convergence of the LAS
scheme (I . 1000 for practical cases described here), and
L & 103 is the number of warm starts that we use in
biclustering algorithms to achieve a desired precision of the
best local maximum.

3.4. Tests with synthetic data

We examined the detection procedure on artificially-
generated signals consisting of a mixture of correlated and
uncorrelated one-dimensional random walks. In this ideal-
ized situation, we generate N = 900 artificial signals as
one-dimensional random walks starting from zero. We select
k0 = 50 of them to be correlated (repeating the step of the
“master” random work with probability ρ = 0.5, and acting
as independent otherwise) and to represent an anomalous
subgroup we would like to detect and identify. First, we
detrend the data and construct the correlation matrix M in
the way described in Section 2; we choose τcorr = 200, and
the running mean is taken over the window τav = 10 time
steps. The spectrum of M , shown in Figure 2, triggers a
positive detection according to the criterion (4).

Next, we run the localization algorithms presented in
Sections 3.2 and 3.3. We find that for k∗ =

√
N = 30,

all algorithms perfectly identify a subgroup of 30 correlated
signals. If we choose to search the correlated group with
the (unknown) ground truth size k0 = 50, then the low-
rank approximation approach misidentifies 5 signals, cor-
rectly counting the other 45 as correlated. Both biclustering
methods make only one mistake in this case; however, it
requires a rather large number of warm starts (L ' 3 · 104)
in order to converge to the best solution, which makes the
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Figure 2. The spectrum (on a semi-log scale) of the correlation matrix
M constructed from the total of N = 900 artificially-generated signals,
including k0 = 50 correlated walks. The correlated group of signals
produces an identifiable gap ∆1 in the eigenvalue spectrum.

algorithm slightly slower compared to the SVD-based one.
As we will see in the next section, the speed of convergence
is a very important property for online deployment of the
algorithm.

4. Experiments with Real Data

4.1. System Description

Large commercial air conditioning (AC) systems repre-
sent an attractive cyber-physical test case for fault detection
and localization algorithms because they contain relatively
sophisticated physical, control and communications archi-
tectures, and the available tag data can serve as a ground
truth for discovered groups and modules. We collected
and analyzed the data streams from the AC system in a
30 000 m2 office building, with about 900 sensors located in
the conditioned spaces. These sensors record local tempera-
ture, airflow and valve opening positions. See Figure 3 (Left)
for a schematic representation of the system used in this
study, which shares a common structure with a large number
of commercial AC systems. A more in-depth discussion of
this AC layout is provided in [19]. Altogether this constitutes
a system of approximately 1000 data heterogeneous data
streams which are sampled once per minute. A network
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Figure 3. Left: A schematic representation of the air conditioning (AC)
system. The recorded temperature, airflow and valve opening position
signals from all the sensors and fans are used as input data streams. Right:
Network representation of a part of the cyber-physical system which reflects
the spatial organization of the conditioned spaces, and includes a part of
both physical and control links.

representation of a part of the physical system including
conditioned spaces, fans and controllers is drawn in Figure 3
(Right); this data has been extracted from the tag data
accompanying the recorded signals. This figure takes into

account the spatial layout of conditioned rooms, and gives
an idea of physical and communication links in the system.

A conflict of local control loops causes one fan (Fan
6 in Figure 3, Right) to behaving anomalously; at certain
times of the day it produces mild uncontrolled oscillations.
Although this action is not a result of an attack, it represents
a perfect initial test for the protocol aiming at detection
and localization of failures. We expect that these oscillations
should leave a signature in the correlations of related phys-
ical signals even while the signal is too weak to be visible
and identified as an outlier in individual recorded signals.
This anomalous behavior is a proxy for attacks of the control
architecture that can occur due to computer control network
vulnerabilities. First we demonstrate the performance of our
detection certificate using the described Fan 6 oscillations
as an example failure event. Then we perform controlled
experiments mimicking a simple intrusion on a smaller
subset of devices in order to test the performance limits
of the detection and localization algorithms as a function of
the size of the anomalous set.
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Figure 4. Fan 6 oscillations create anomalous data measurements in rooms
that are serviced by that fan. Changes in output of Fan 6 (top plot)
influences the temperature, air flow, and valve opening positions in Room
1 (red) and Room 2 (green) measurement data but not in Room 3 (blue)
data, presented in the bottom plots: in this example, Rooms 1 and 2 are
serviced by Fan 6 but Room 3 is not.

4.2. Detection Algorithm Performance

In Figure 4 we show examples of our data streams.
The top plot of Figure 4 shows an anomalous behavior
of Fan 6. The three bottom plots show examples of other
signals of different types (temperature, airflow and valve
positions) that we use for tests. The analysis of individual
signals do not allow us to detect an anomalous behavior and
to relate it to the malfunctioning Fan 6, and therefore we
follow the procedure described in Section 2, constructing
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the correlation matrix and attempting to detect the anomaly
from correlations of physical signals.

Let us first demonstrate the performance of the detection
algorithm described in Section 3.1. In Figure 5, we show
the spectra of the correlation matrices M in four different
situations: i) Fan 6 oscillating, and all signals included; ii)
Fan 6 oscillating, and signals serviced by Fan 6 removed
from the data; iii) Fan 6 not oscillating, all signals included;
iv) Fan 6 oscillating smoothly with a large period (on the
order a half a day). It is clear that only case i) should trigger
a positive detection outcome. Indeed, we notice that only the
spectrum in this case satisfies the condition (4), while all
other situations yield a negative detection result. The matrix
M in each case has been constructed using the parameters
τav = 30 min and τcorr = 200 min.
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Figure 5. Spectra (in the semi-log scale) of the correlation matrix M for
different scenarios. Oscillations of Fan 6 occur: (a) related signals included,
(b) related signals excluded. All signals included when (c) Fan 6 does not
oscillate and (d) Fan 6 oscillates, but with smoothly with a large period.
Only the spectrum (a) satisfies the detection condition (4), as it should be.

4.3. Localization Algorithm Performance

Once the presence of anomaly is detected, we compare
the performance of localization algorithms. Is it possible to
correctly identify the group of nodes related to the anoma-
lous fan, and hence to infer the reason of misbehavior? Ta-
bles 1 and 2 demonstrate localization results for two values
of group sizes: the ground truth k0 = 209 heterogeneous
streams serviced by Fan 6 (out of N = 974 total signals),
which is in general unknown, and for k∗ = 30 strongest
signals. We follow the strategy outlined in Sections 3.2
and 3.3 and use different combinations of the smoothing
window time τav and the correlation time window τcorr. As
discussed in Section 2, little relevant information is captured
with small τav, and indeed we find that τav = 10 does not
lead to a positive detection, see Table 1. The best results
are obtained for larger values of τav, where more data is
incorporated in the correlation matrix.

One of the major requirements for the algorithms is the
ability to perform online detection and localization. New
data points arrive every minute, so we would like the local-
ization algorithms to converge in several seconds. The low-
rank algorithm is very fast, and does not need any adjust-
ments. As discussed in the previous section, in order to meet
the computation complexity requirement for the biclustering

TABLE 1. THE NUMBER OF MISMATCHES (FALSE DETECTIONS)
IDENTIFIED BY THE LOCALIZATION ALGORITHMS IN THE PRESENCE OF

FAN 6 ACTIVITY FOR THE SEARCHED GROUPS OF SIZES k∗ AND k0 ,
WITH k∗ = 30. FOR ALL CASES, τCORR = 120 MIN IS KEPT FIXED.

τav Detection
Number of false positives

Low-rank LAS IGP
k∗ k0 k∗ k0 k∗ k0

10 7 27 169 26 144 25 149
30 3 0 123 0 112 0 115
50 3 0 106 0 107 0 108

TABLE 2. COMPARISON OF THE LOCALIZATION ALGORITHMS UNDER
THE SAME CONDITIONS AS THE ONES DESCRIBED IN TABLE 1, AS A
FUNCTION OF τCORR . IN THIS TABLE, τAV = 30 MIN IS KEPT FIXED.

τcorr Detection
Number of false positives

Low-rank LAS IGP
k∗ k0 k∗ k0 k∗ k0

90 3 2 128 2 120 2 122
120 3 0 123 0 112 0 115
160 3 0 112 0 110 0 109
200 3 0 106 0 103 0 104

algorithm we are forced to limit the number of warm starts to
1000 for the size k0 = 209 and to 10000 for k∗ = 30 since
the convergence time of biclustering procedure grows with
k. Another important property of the biclustering methods
is that unlike in the low-rank approximation, the identities
of the discovered columns do not always match the identity
of the discovered rows; we use only one of the subsets to
compute the number of mismatches.

With these restrictions, the three algorithms produce
similar results with a comparable speed (under 3 seconds
for low-rank algorithm and within 20 − 30 seconds for
biclustering in the present case). While only half of the
true nodes are discovered when searching for all of the k0
anomalous signals, very few false positives occur when only
searching for the k∗ strongest signals. The discovered k∗

signals in almost all cases belong to a subgroup of a true
group related to the anomalous fan. This value is sufficient
to determine the common functional role of nodes inside this
group, which corresponds to their relation to the anomalous
Fan 6 in this case study. Therefore, all algorithms satisfy
the requirements of performance, simplicity and scalability,
which make them appropriate for deployment in real cyber-
physical systems. In the next section, we discuss controlled
experiments which would allow us to investigate the effect
of the size of the anomalous community.

4.4. Identification limits from controlled experi-
ments

Previously, we have tested the performance of the
scheme on detecting the faulty behavior of Fan 6 already
present in the system. In this section, we report results from
controlled experiments on particular sensors of the office
automation system. In their simplest form, these experiments
consisted in a manipulation of temperature set points, mim-
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icking localized intrusions of small amplitude. The trials
were conducted on the controllers related to a small number
of sensor units on Fan 5 (a non-oscillating fan, see Figure 3,
Right), while all sensors related to the anomalous Fan 6 have
been excluded to avoid an undesired interference.

The experiments that we report here took the following
form: the temperature set points affecting 30 sensors related
to Fan 5 and measuring temperature, airflow, and valve
opening position were raised 0.5◦F for 30 minutes and
then lowered 1◦F for the next 30 minutes. Among these
potentially affected 30 data streams, only 16 showed a
significant level of correlation. There are several reasons
for this behavior, but the most important one consists in the
observation that the airflow and valve opening positions have
a much faster response to the set-point change compared
to the temperature measurements which rise or fall on a
much longer time scale. In the following we assume that
these k0 = 16 sensors constitute the ground truth for an
anomalous group of nodes.

Using the collected data, we validate the choice of
k∗ =

√
N put forward in Sections 3.2 and 3.3, and used

throughout the study of the anomalous sensors related to the
Fan 6. In particular, we verify that if the size of the group k0
represents a sufficiently small fraction of the total number
of signals, then it can not be correctly localized. In order
to perform this study, we have considered 1000 selections
of N randomly chosen signals but always containing the
k0 = 16 anomalous nodes. We applied our detection and
localization protocol in each case for a range of N . The
low-rank algorithm was used for localization as we have
seen that at these scales it gives the same results with the
fastest computation time; other localization methods show
equivalent results. Note that the localization procedure was
triggered only when the detection condition (4) was satisfied.
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Figure 6. Empirical probability of successful detection and localization of
a group of k0 = 16 anomalous devices as a function of the total number
of signals N . Localization is considered as succesfull if all k0 nodes
are correctly identified (top) and if at least 50% of nodes are recovered
(bottom). Each point is averaged over 1000 random selections of N signals.

The results are presented in the Figure 6 with the em-
pirical probability of successful detection and localization
shown as a function of the total number of signals N . Two

definitions of success are examined; a full and correct 100%
identification of the ground truth, and a successful localiza-
tion of at least 50% of the k0 nodes, i.e. correctly identifying
at least 8 devices out of 16. For the 100% identificaiton case
we find a phase transition-type behavior as a function of
N . The localization algorithm starts to fail at some point
near N = k20 . This behavior is very close to the theoretical
bounds derived in the idealized situations of Gaussian and
Bernoulli distributions; in particular, it justifies our choice
for k∗ in the case where the optimal community size is
unknown. The second case of 50% identificaiton illustrates
that if we allow for some mistakes in the identification
of anomalous sensors, then a successful localization occurs
every time the detection procedure yields a positive result.
This procedure might be appropriate if the labeled network
is sufficiently sparse and the common cause of the anomaly
can be easily identified using the sensor labels even in the
case where not all the nodes are correctly localized.

5. Related Work

Methods for detecting and localizing cyber-physical fail-
ures and attacks have attracted significant attention [1],
[2], [20], [21]. Major hurdles stem from a high degree of
influence of sensor data from seasonal changes, proximity
correlations and operational switches, and from the fact
that infrastructure operators do not always have an accurate
model of the physical network, or the existing models are
not integrated into unified cyber-physical system model [20].
Another important factor is an increasing size and com-
plexity of the systems under considerations. Some previous
works develop detection techniques based on an accurate
system modeling and on accounting for different attack
scenarios [21], which represents an opposite approach to the
problem compared to the present study which is agnostic to
the specific aspects of the system architecture.

Aiming at general applications, we have used a simple
running-mean signal detrending procedure in Section 2.
Depending on a particular application, a wide array of other
detrending methods [22], [23] can be used, each of them
having associated strengths and weaknesses. The considered
problem can be regarded as the detection of outliers which
is an important field with application to a wide number of
domains (see [24] for a survey). A large number of meth-
ods have been suggested, including network [25] and time
series [5] specific techniques. A general formulation of the
anomaly detection problem often takes form of hypothesis
testing by considering H0 (absence of anomaly) versus H1

(presence of anomaly). In the present work, H1 has been
formulated as the existence of a submatrix with deviating
elements in a properly normalized correlation matrix. This
task is directly related to the problem of finding hidden
cliques and community detection in graphs [6].

The detection of the anomalous submatrix is an instance
of a problem known as optimal denoising which appears
in many machine learning [26] and signal processing [27]
applications. In real-world situations the signal matrix might
have no special structure, while the form of the noise term
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is in general unknown. Several studies have explored the
problem of the effective rank estimation of the signal matrix
by optimal thresholding of singular values [28], [29]. In this
work, we encountered a different problem of estimating the
size of the anomalous submatrix under the fixed low-rank
assumption.

6. Conclusions

We explored a set of methods for detection and lo-
calization of failures in cyber-physical systems which are
based on the analysis of correlations between physical time
series. The established protocol enables the identification of
a group of anomalous sensors and provides insight for the
localization of the failure source. The detection procedure
achieves a number of important requirements, including low
computational complexity and simplicity of implementation.
Our capability to access the cyber-physical demonstration
system to collect and analyze data from this system, and
to deploy the detection algorithm opens a path forward for
future work. We plan to continue real-world experiments
which will consist of manipulating the building control
system in a known manner using diverse attack strategies;
this will allow us to further validate the presented methods.
Another direction that we intend to explore consists of
combining more control communication network data in
order to minimize the possibility of false detections and
to enhance the quality of failure source localization. These
developments are essential for conception of algorithms
for proportional response and for designing resilient cyber-
physical networks.

Acknowledgments

The authors acknowledge Arthur Barnes, Gary Goddard
and Hari Khalsa for their help with data collection, and
Charles Bordenave, Michael Chertkov, David Gamarnik,
Earl Lawrence, Sidhant Misra and N. Raj Rao for fruitful
discussions. This work was funded by the Department of
Energy at Los Alamos National Laboratory under contract
DE-AC52-06NA25396 through the Laboratory-Directed Re-
search and Development Program.

References

[1] L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang, “Cyber-physical
systems: A new frontier,” in Machine Learning in Cyber Trust.
Springer, 2009, pp. 3–13.

[2] J. Shi, J. Wan, H. Yan, and H. Suo, “A survey of cyber-physical sys-
tems,” in Wireless Communications and Signal Processing (WCSP),
2011 International Conference on. IEEE, 2011, pp. 1–6.

[3] A. A. Cárdenas, S. Amin, and S. Sastry, “Research challenges for the
security of control systems.” in HotSec, 2008.

[4] Y.-L. Huang, A. A. Cárdenas, S. Amin, Z.-S. Lin, H.-Y. Tsai, and
S. Sastry, “Understanding the physical and economic consequences
of attacks on control systems,” International Journal of Critical
Infrastructure Protection, vol. 2, no. 3, pp. 73–83, 2009.

[5] M. Gupta, J. Gao, C. Aggarwal, and J. Han, “Outlier detection for
temporal data: A survey,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 26, no. 9, pp. 2250–2267, Sept 2014.

[6] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[7] F. Benaych-Georges and R. R. Nadakuditi, “The eigenvalues and
eigenvectors of finite, low rank perturbations of large random matri-
ces,” Advances in Mathematics, vol. 227, no. 1, pp. 494–521, 2011.

[8] A. Coja-Oghlan, “Graph partitioning via adaptive spectral tech-
niques,” Comb. Probab. Comp., vol. 19, no. 02, pp. 227–284, 2010.

[9] C. Eckart and G. Young, “The approximation of one matrix by another
of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.

[10] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. Lanckriet, “A
direct formulation for sparse PCA using semidefinite programming,”
SIAM Review, vol. 49, no. 3, pp. 434–448, 2007.

[11] D. S. Papailiopoulos, A. G. Dimakis, and S. Korokythakis, “Sparse
PCA through low-rank approximations,” JMLR: Workshop and Con-
ference Proceedings, vol. 28, no. 3, pp. 747–755, 2013.

[12] Z. Zhang, H. Zha, and H. Simon, “Low-rank approximations with
sparse factors I: Basic algorithms and error analysis,” SIAM J. Matrix
Anal. Appl., vol. 23, no. 3, pp. 706–727, 2002.

[13] R. L. Thorndike, “Who belongs in the family?” Psychometrika,
vol. 18, no. 4, pp. 267–276, 1953.

[14] B. Hajek, Y. Wu, and J. Xu, “Information limits for recovering a
hidden community,” arXiv preprint arXiv:1509.07859, 2015.

[15] Y. Deshpande and A. Montanari, “Finding hidden cliques of size√
N/e in nearly linear time,” Foundations of Computational Mathe-

matics, vol. 15, no. 4, pp. 1069–1128, 2015.
[16] A. A. Shabalin, V. J. Weigman, C. M. Perou, and A. B. Nobel,

“Finding large average submatrices in high dimensional data,” The
Annals of Applied Statistics, pp. 985–1012, 2009.

[17] S. Bhamidi, P. S. Dey, and A. B. Nobel, “Energy landscape for large
average submatrix detection problems in Gaussian random matrices,”
arXiv preprint arXiv:1211.2284, 2012.

[18] D. Gamarnik and Q. Li, “Finding a large submatrix of a Gaussian
random matrix,” arXiv preprint arXiv:1602.08529, 2016.

[19] G. Goddard, J. Klose, and S. Backhaus, “Model development and
identification for fast demand response in commercial HVAC sys-
tems,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 2084–2092, 2014.
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