
PHYSICAL REVIEW E 96, 013304 (2017)

Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
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We present a graph-based methodology to reduce the computational cost of obtaining first passage times
through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture
networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union
of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent
subnetworks is compared to transport through the full network. The number of paths included in the subgraphs
is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First
passage times through the subnetworks are in good agreement with those obtained in the full network, both for
individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of
magnitude reduction of CPU time and mesh size using the proposed method.
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I. INTRODUCTION

Predicting the first passage time of solutes transported
through a sparse fracture network is a common and critical
challenge in many subsurface applications such as aquifer
storage and management, environmental restoration of con-
taminated fractured media, the detection of low-level nuclear
tests, CO2 sequestration, and hydrocarbon extraction [1–8]. In
low permeability media, interconnected fracture networks are
the principal pathways for flow and the associated transport of
dissolved solutes. In contrast to homogeneous porous media,
heterogeneity resulting from the fracture networks creates
irregular fluid velocity fields where flow channeling, isolated
regions of high velocity, is commonly observed [9–14]. These
flow channels indicate that there are subnetworks within the
domain where the fastest transport occurs. In sparse fracture
networks, the fractures that are included in these subnetworks
are primarily determined by the macroscale structure of
the network and the direction of flow [7,15] rather than
mesoscale, e.g., fracture permeability [16,17], or microscale
attributes, e.g., in-fracture aperture variability [12,18]. The a
priori identification of these subnetworks using structural and
hydrological properties would result in significant reductions
in the computational demands for estimating first passage
times because flow and transport simulations would only need
to be performed in a subnetwork rather than the whole domain.

*Corresponding author: jhyman@lanl.gov

Discrete fracture network (DFN) models explicitly rep-
resent these structural and hydrological properties as dis-
crete entities within an interconnected network of fractures.
Individual fractures are (N − 1)-dimensional objects in an
N -dimensional space, e.g., lines in two dimensions or planar
polygons in three dimensions, and are assigned a shape,
location, and orientation based on geological site charac-
terizations. The fractures form an interconnected network
embedded within an N -dimensional matrix that is considered
impermeable. Once a network is constructed, the individual
fractures are meshed for computation and the flow equations
are numerically integrated to simulate flow and transport. The
inclusion of detailed structural and hydrological properties
allows DFN models to represent a wider range of transport
phenomena than traditional continuum models [19,20]. In
particular, topological, geometric, and hydrological character-
istics can be directly linked to flow channeling and first passage
times.

One limitation of DFN models is the high computational
cost associated with the explicit representation of the fracture
network. The number of mesh cells increases nonlinearly
with the number of fractures, density of the network, and
range of length scales being resolved. The computational
overhead is particularly demanding if intersections between
fractures are properly resolved in the mesh [21]. Because
of limited computational resources, the first DFN models
represented networks as a set of connected pipes [22] or used
two-dimensional representations where the fractures did not
need high resolution meshing [23]. Recent advances in high
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performance computing have allowed flow and transport sim-
ulations in large three-dimensional discrete fracture networks
to be performed [24–30]. Nonetheless, the computational
demands persist because fracture networks are stochastically
generated due to uncertainty associated with their parameters.
Therefore, numerous realizations are required to obtain stable
statistics for upscaled observables such as first passage
times.

We propose a graph-based method for efficient approxima-
tions of first passage times through sparse fracture networks.
The cornerstone of the method is creating a graph represen-
tation of a DFN based on its topology and the flow boundary
conditions. In sparse fracture networks whose radii exhibit a
range of length scales, flow channel location (where the fastest
transport through the network occurs) is primarily determined
by the network structure [13,16,17] and the imposed flow di-
rection [7]. Therefore, the proposed topologically based graph
representation of the network captures one of the principal
features that determines where flow channeling occurs. The
other principal feature, the direction of flow, is incorporated
by including the inflow and outflow boundaries into the graph.
This construction allows us to identify subgraphs composed of
the k shortest paths (fewest number of fractures) between the
inflow and outflow boundaries. The mapping between the DFN
and graph is a bijection so the preimage of each subgraph is a
subnetwork that can be extracted from the full DFN. To obtain
estimates of first passage times through the subnetwork, it is
subject to the same meshing procedure, initial and boundary
conditions for the pressure solution, and particle tracking as
the full network.

While graphs and fracture networks have both been ex-
tensively studied, the application of graph theory to fracture
network analysis is a fairly young discipline. Andresen et al.
[31] proposed a similar transformation between DFNs and
graphs to compare the topological structure of synthetic two-
dimensional fracture networks with an actual rock outcrop.
Hope et al. [32] used Andresen et al.’s representation to com-
pare topological structures of two DFN generation method-
ologies in three dimensions. The focus of these studies was
comparing fracture networks, rather than using the structure
to identify subnetworks. Santiago et al. [33] constructed graphs
based on two-dimensional fracture outcroppings and used
topological measurements to identify the possible locations
of flow channeling through the network. Aldrich et al. [34] in-
troduced a weighted graph representation of three-dimensional
fracture networks where edge weights were based on particle
transport through the DFN. Analyzing this flow topology
graph allowed them to identify the subnetwork where flow
channeling occurred. Our method differs from that of Aldrich
et al. [34] because we identify these subnetworks prior to
running flow and transport simulations.

II. DISCRETE FRACTURE NETWORK SIMULATIONS

A. Generic fracture networks

We generated 100 three-dimensional generic fracture net-
works as a test set for the graph-reduction method. One
hundred networks provide stable statistics in terms of transport
breakthrough times (details not included). The networks
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FIG. 1. Example discrete fracture network composed of 481
fractures. Fracture lengths are samples from a truncated power-law
distribution and fracture permeabilities are positively correlated to the
fracture radius. The inset shows the variable resolution conforming
Delaunay triangulation of the fracture network.

are composed of circular fractures whose orientations are
uniformly random and radii follow a truncated power-law
distribution. Although the networks are meant to be generic,
the network parameters are based on observed fractured media
[35]. Each DFN is generated in a cubic domain with sides of
length L = 15 m. Fracture radii r (in meters) are sampled from
a truncated power-law distribution with exponent α and lower
and upper cutoffs (r0, ru),

r = r0

[
1 − u + u

(
r0

ru

)α]−1/α

, (1)

where u is a random number sampled from the continuous
uniform distribution on the closed interval [0,1]. We select a
value of α = 2.6 so that the distribution has finite mean and
variance and is in accordance with geological observations
[35]. The lower cutoff, r0, is set to 1 m and the upper cutoff
equal, ru, is set to 5 m. Fracture centers are sampled uniformly
throughout the domain. Isolated fractures and clusters that do
not connect the inflow and outflow boundaries are removed
because they do not contribute to flow. The resulting fracture
networks contain around 500 fractures each.

Figure 1 shows a typical DFN realization. Fractures are
colored by their permeabilities, with warmer colors indicating
higher values. The inset shows the variable resolution conform-
ing Delaunay triangulation of the fracture network generated
using the feature rejection algorithm for meshing (FRAM)
[21]. Mesh resolution is a function of distance from fracture
intersections. The mesh is refined near fracture intersections
to properly resolve the high gradients in the flow field that
occur in these regions. The mesh is coarsened away from the
intersections where gradients in the pressure field are smaller.
Thus, the number of cells in the mesh increases with both the
network surface area and density.

The fracture networks are sparse, with an average P32 value
(total fracture surface area over total volume) of 1.97 m−1

and variance of 0.03. The connected network density [12]
is about ten times the critical percolation value [36]. Thus,
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the networks are dense enough that there are multiple paths
between the inflow and outflow boundaries.

Variability in hydraulic properties is included into the net-
work by correlating fracture apertures to their radii [14,17,37–
41]. We use a positively correlated power-law relationship

b = γ rβ, (2)

where γ = 5.0 × 10−5 and β = 0.5 are dimensionless param-
eters. It is possible to include in-fracture aperture variability
into high fidelity DFN simulations [12,18], but constraining
the in-fracture variability requires detailed knowledge of
the particular rock formation. Therefore, we do not include
in-fracture aperture variability in these simulations.

B. Flow equations

Under this assumption of aperture uniformity, flow through
the fractures is equivalent to flow between two parallel plates.
The volumetric flow rate Q per unit fracture width normal
to the direction of flow is therefore given by the Boussinesq
equation [42],

Q = −b3

12μ
∇P , (3)

where μ is the fluid viscosity and ∇P is the pressure gradient.
This relationship between aperture and flow rate can be
used to derive a similar relationship between aperture and
permeability,

k = b2

12
, (4)

referred to as the cubic law [43]. A consequence of Eqs. (2)
and (4) is that fracture permeability is positively correlated to
its size.

Rewriting Eq. (3) using Eq. (4) provides the governing
equation for flow within each two-dimensional fracture plane,

q = − k

μ
∇P, (5)

where q is the Darcy flux (Q/b), which is referred to as the
Darcy equation.

We drive flow through the domain by applying a pressure
difference of 1 MPa across the domain aligned with the x

axis. No flow boundary conditions are applied along lateral
boundaries and gravity is not included in these simulations.
These boundary conditions along with mass conservation,

∇ · q = 0, (6)

and Eq. (5) are used to form an elliptic partial differential
equation for steady-state distribution of pressure within each
network:

∇ · (k∇P ) = 0. (7)

Once the distribution of pressure and volumetric flow rates are
determined by numerically integrating Eq. (7), the methods
of Makedonska et al. [44] and Painter et al. [45] are used to
determine the Eulerian velocity field u(x) within the DFN.
Even though the fracture apertures are uniform within each
fracture plane, the in-fracture velocity field is nonuniform.
Variations in local flow fields depend on the local network

structure within each fracture plane. Specifically, intersections
with other fractures influence the in-plane velocity field.

C. Lagrangian attributes

We represent the spreading of a nonreactive conservative
solute through each DFN by a cloud of passive tracer particles,
i.e., using a Lagrangian approach. Complete mixing is used
to determine what direction particles exit out of fracture
intersections [44,46]. Particles do not interact with the matrix;
i.e., matrix diffusion and sorption are not considered. The
imposed pressure gradient is aligned with the x axis and thus
the primary direction of flow is in the x direction. Particle
initial positions a are uniformly distributed along fracture
intersections with the inlet plane x0 = (0,y,z). The trajectory
x(t ; a) of a particle starting at a at time t = 0 is given by the
advection equation

dx(t ; a)

dt
= v(t ; a), x(0; a) = a, (8)

where the Lagrangian velocity v(t ; x) is given in terms of the
Eulerian velocity u(x) as

v(t ; a) = u[x(t ; a)]. (9)

The length of the path line, � (in meters), is used to parametrize
the spatial and temporal coordinates of the particle. The space-
time particle trajectory is given in terms of � by

dx(�; a)

d�
= v[t(�); a]

v[t(�); a]
, (10a)

dt(�; a)

d�
= 1

v[t(�),a]
, (10b)

where we set v(t,a) = ‖v(t ; a)‖. The length �(t ; a) of the
trajectory at a time t is

d�(t ; a)

dt
= v�[�(t),a], (11)

where we defined v�(�; a) = v[t(�); a].
The travel time τ (xL; a) of a particle that has crossed the

outlet plane xL = (L,y,z) is

τ (xL; a) = t[λ(xL); a], (12)

where

λ(xL) = inf{�|x(�; a) � L}. (13)

The first passage time of all particles through a network F is
given by

τ̂ (F ) = inf
{a}∈F

{τ (xL; a)}. (14)

We consider individual values of τ̂ (F ) and their distribution
obtained for the ensemble of networks � = {F },

ψ(t) =
∫

�

dFδ[t − τ̂ (F )]. (15)

We use the computational suite dfnWorks [27] to generate
each three-dimensional DFN, solve the steady-state flow
equations, and determine transport properties through the net-
work. dfnWorks uses FRAM [21] to generate three-dimensional
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fracture networks and the LaGriT meshing toolbox [47] to
generate conforming Delaunay triangulation of the DFN.
The parallelized subsurface flow and reactive transport code
PFLOTRAN [48] is used to numerically integrate the governing
flow equations to steady state. An extension of the WALKABOUT

particle tracking method [44,45] is used to determine path lines
through the DFN and simulate solute transport. Details of the
suite, its abilities, applications, and references for detailed
implementation are provided in [27].

III. GRAPH REPRESENTATIONS

We construct a graph representation of each DFN based on
the network topology. Let F = {fi} for i = 1, . . . ,n denote
a DFN composed of n fractures. We define a mapping, φ,
that transforms F into a graph G(V,E) composed of n = |V |
vertices and m = |E| edges. For every fi ∈ F , there is a unique
vertex ui ∈ V ,

φ : fi → ui. (16)

If two fractures, fi and fj , intersect (fi ∩ fj �= ∅), then there
is an edge in E connecting the corresponding vertices,

φ : fi ∩ fj �= ∅ → eij = (ui,uj ), (17)

where (u,v) ∈ E denotes an edge between vertices u and v.
All edges are assigned unit edge weight to isolate topological
attributes from other attributes that could be considered such
as geometric, e.g., lengths, or hydrological, e.g., permeability.
The mapping φ is bijective; i.e., it is an isomorphism between
F and G. Therefore, every subgraph G′({u},{e}) ⊆ G has a
unique preimage F ′ in the fracture network,

φ−1 : G′ → F ′, (18)

that is a subnetwork of the full network, F ′ ⊆ F .
We also include source s and target t vertices into G to

incorporate flow direction. Every fracture that intersects the
inlet plane x0 is connected to the source vertex,

φ : fi ∩ x0 �= ∅ → esi = (s,ui), (19)

and every fracture that intersects the outlet plane xL is
connected to the target vertex t ,

φ : fi ∩ xL �= ∅ → eit = (ui,t). (20)

This mapping φ is similar to the one proposed by Andresen
et al. [31] but differs in this key aspect of including source and
target vertices to represent inflow and outflow boundaries.

The considered fracture networks and mapping φ results
in graphs that have the following properties: (i) all vertices
are degree one or greater because all fractures in the original
network intersect at least one other fracture, and (ii) the graph
is connected because each connected subnetwork within the
DFN connects the inflow and outflow boundaries and is thus
combined into the same graph via the source and target nodes;
clusters that do not connect inflow and outflow boundaries
do not contribute to flow and have been removed. A result
of the second property is that there always exists at least one
connected path between the source and target vertices.

Figure 2 shows the graph obtained from the fracture
network shown in Fig. 1 using the mapping φ. The source
vertex is colored red and the target vertex is colored blue.

FIG. 2. Graph derived using the topology of the DFN shown in
Fig. 1. A source vertex (red) has been included and connected to all
fractures that intersect the inflow boundary and a target vertex (blue)
has been included and connected at all fractures that intersect the
outflow boundary.

The geometric layout of the graph is an arbitrary projection
into R2 using a force-directed layout algorithm [49]. Though
the positions do not represent actual fracture locations in R3

the drawing gives some perspective on the connectivity of the
fracture network and the graph path lengths between the source
and target.

Shortest-path subnetworks

We consider several subgraphs G′, along with their equiv-
alent subnetworks F ′, corresponding to the union U (k) of the
edges in k shortest paths from the source to the target. The k

shortest paths are defined as a generalization of the shortest
path to include k total paths (possibly overlapping) in order
of nondecreasing length starting from the shortest path. In our
case we consider only loopless paths from the source to the
target. The edges in G′ have unit weight which we assign as
the edge length; the shortest paths correspond to paths with the
fewest edges between the source and the target. The preimage
of this subgraph, which is its equivalent fracture subnetwork
F ′, has the fewest intersections, and thus connected fractures,
spanning the inflow and outflow boundaries.

The number of shortest paths k to include in the subgraph
U = U (k) is a parameter in the algorithm. To estimate a
suitable value of k we calculated the shortest paths for various
values of k and examined the resulting subgraph size. It is
possible that for a given graph there are paths with the same
length (in our case the same number of edges). Instead of
optimizing the set of equal length paths to be included we
instead increase the number of total paths, k, until we achieve
the desired numerical result. Figure 3(a) shows the fraction
of all edges |U |/|E| in the graph as a function of k. Thin
semitransparent lines are individual network realizations and
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FIG. 3. (a) The fraction of edges |U |/|E| in the graph as a
function of the number of shortest paths k. Thin semitransparent
curves are individual network realizations and the thick curve is the
average of all networks. (b) The rate of change for the average size
|U | = ∑ |U |/100 of the shortest-path edge set. The number of edges
increases rapidly at first but after approximately k = 20 the number
of edges added with each new loopless path is small.

the thick line is the average |U | of all 100 networks. Figure 3(b)
shows the numerically estimated derivative of the average
value |U |. The average number of edges, |U |, increases rapidly
for small k but then for larger k few new edges are added with
each additional path.

For first passage time calculations we start with the shortest
paths between the source and target for a single path k = 1.
Next, we consider the union of k shortest loopless paths from
the source to target for k = 5, 10, and 20. We select these values
by considering the fraction of edges in the graph representation
that are contained within each of these subgraphs. The values
we select are in the fastest changing region (5 shortest paths),
a moderate value (10 shortest paths), and the beginning of the
region where the derivative has started to stabilize (20 shortest
paths); cf. Fig. 3 (bottom).

We also consider the 2-core of the graph, which is an upper
bound on the union of loopless paths from source to target. The
k-core of a graph is the maximal subgraph that contains vertices
of degree k or greater [50]. Physically, this set corresponds
to fractures where transport can enter and exit a fracture
through different intersections; e.g., all dead-end fractures are
recursively removed. In three-dimensional fracture networks
such dead-end fractures are not necessarily no-flow regions,
which is the case in two dimensions. If the line of intersection
between two fractures aligns with the pressure gradient there
will be a gradient within the dead-end fractures and thus flow.
Hence, the presence of dead-end fractures changes the local
flow field on intersecting fractures and thus its removal does
as well. The 2-core typically makes up between 50% and 60%
of the graph edges (not shown in Fig. 3). The source and target
vertices are always retained in the 2-core.

For a graph G with n vertices and m edges the shortest-path
set can be computed using breadth-first search in O(m + n)

time [51]. The computation of the k shortest paths is harder
but still can be done in polynomial time, O(kn(m + n log n))
[52]. Computing the k-core composition has time complexity
of O(m) [53]. The subgraphs sets are computed using the
NETWORKX graph software package [54].

Figure 4 shows three subnetworks (top) and their subgraphs
(bottom) derived from the network and graph shown in Figs. 1
and 2. Semitransparent vertices indicate fractures that have
been eliminated from the fracture network. The full network is
made of 481 fractures, the shortest path is made of 3 fractures
(left), the ten shortest paths contain 23 fractures (middle), and
the 2-core contains 276 fractures (right). This reduction in
number of fractures drastically changes the number of cells
in the mesh used for flow and transport simulations. The full
network is meshed with 910 397 triangles, the shortest path is
meshed with 5438 triangles, the ten shortest paths are meshed
with 69 353 triangles, and the 2-core is meshed with 639 319
triangles.

The method to obtain first passage times using these
subnetworks can be conceptually divided into the following
four steps:

(i) A graph representation of a DFN is constructed using
the mapping defined in Eqs. (16) and (17) (φ : F → G).

(ii) A subgraph composed of the k shortest paths between
the source and target is identified (G′ ⊆ G).

(iii) We isolate the subnetwork that is the preimage of the
extracted subgraph (φ−1 : G′ → F ′).

(iv) To obtain estimates of first passage times through each
subnetwork, they are subject to the same meshing procedure,
initial and boundary conditions for the pressure, and particle
tracking initial conditions as the full network [Eqs. (7)–(14)].

IV. METHOD PERFORMANCE

We measure the method’s performance in terms of accuracy
and efficiency. First, we compare predictions of the first
passage time in the full network and those obtained using
each subnetwork. Second, we compare the computational cost
for the simulations.

A. First passage times

Accuracy of the method is determined by comparing the
first passage times (14) in F and F ′ and statistics of the
distribution of first passage times (15) for the ensemble of
networks � = {F } and their subnetworks �′ = {F ′}. Let L
denote the operator that takes a DFN F as an input and returns
the first passage time τ̂ ,

L : F → τ̂ . (21)

For each subnetwork F ′, we can obtain a first passage time τ̂ ′
using the same operator:

L : F ′ → τ̂ ′. (22)

The goal is that the error

‖τ̂ − τ̂ ′‖ (23)

is small for each realization and in terms of their distributions
obtained from � and �′. Individual realizations provide a sin-
gle value of τ̂ ′ to directly compare with τ̂ . The distributions of
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FIG. 4. Subnetworks (top) and subgraphs (bottom) derived from the network and graph shown in Figs. 1 and 2, respectively. Subfigures show
the (left) shortest path through the network, (middle) union of the ten shortest paths in the network, and (right) 2-core network. Semitransparent
vertices denote fractures that have been eliminated from the fracture network.

τ̂ ′ and τ̂ are compared in terms of their first two moments. Dif-
ferences between the distributions are measured by computing
the Kullback-Leibler divergence (relative entropy), smaller
values of which indicate better agreement between the two
probability densities. The two-sample Kolmogorov-Smirnov
test is also used to determine whether these differences are
statically significant.

Figures 5(a)–5(e) show τ̂ ′ obtained in the subnetworks
plotted against τ̂ . The shortest path [Fig. 5(a)], 5 shortest
paths [Fig. 5(b)], and 10 shortest paths [Fig. 5(c)] are on
the top row and the 20 shortest paths [Fig. 5(d)] and 2-core
[Fig. 5(e)] are on the bottom. Values are divided by the
median passage time of the ensemble of particles through
all 100 networks to nondimensionalize time. The black line
corresponds to identical first passage times in the subnetworks
and the full networks. Deviations are quantified by computing
the coefficient of determination, R2. Values of R2 that are
closer to 1 indicate better agreement between τ̂ ′ and τ̂ over
the set of sample networks (values are provided in Table I).
In general, the first passage times of the shortest network
(blue) are close to actual first passage times, but there are
exceptions (R2 = 0.54). Values that deviate from the trend
occur in networks where the particle with the earliest passage
time does not travel along the shortest topological path. There
is less scatter in the comparison with the five shortest paths
(R2 = 0.57), but there are still outliers. Including the ten
shortest paths leads to much better agreement with the full
network (R2 = 0.86). However, the increase in accuracy by

increasing to include the 20 shortest paths is less than going
from 5 to 10 (R2 = 0.90). The difference between the first
passage times through the 2-core and the full networks is very
small (R2 = 0.99).

Figure 5(f) shows the distributions of τ̂ and τ̂ ′ [Eq. (15)]
obtained from the subnetworks and the full network. Table I
reports the first two moments of the distributions (mean, μ;
variance, σ 2) of τ̂ and τ̂ ′ along with the results of the two-
sample Kolmogorov-Smirnov (KS) test and Kullback-Leibler
(KL) divergence measure. In general, there is good agreement
between the distributions obtained using the subnetworks and
the full network. The distribution of τ̂ ′ in the shortest-path
networks has a higher mean, a longer tail, and higher variance
than the full network. As more paths are included into the
subnetworks the KL divergence measure decreases, indicating
better agreement with the distribution of first passage times
in the full network. The 2-core matches the full network
values well for all values. The two-sample Kolmogorov-
Smirnov test rejects the null hypothesis that the distributions
τ̂ ′ from the shortest paths are from the same distribution of
τ̂ obtained for the full network. The first two moments of
the distributions of τ̂ ′ through the 5, 10, and 20 shortest
paths and 2-core are close to those of τ̂ . The two-sample
Kolmogorov-Smirnov test returns low values of the KS statistic
and high p values for the 5, 10, and 20 shortest paths.
Comparison of the full network with the 2-core resulted
in lower KS values and higher p values than any other
subnetwork.
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FIG. 5. First passage times in subnetworks vs the first passage time through the full network. Time has been nondimensionalized by the
median breakthrough of the ensemble of particles through all 100 networks. The black line corresponds the identical first passage times in the
subnetworks and the full networks. Values of coefficient of determination R2 closer to 1 indicate better agreement between τ̂ ′ and τ̂ over the
set of sample networks. (a) Shortest path, (b) 5 shortest paths, (c) 10 shortest paths, (d) 20 shortest paths, and (e) 2-core. (f) The distributions
of first passage times in all subnetworks and network realizations.

B. Computational cost

In this section we report mesh reduction and computational
speed up when considering a subnetwork relative to the full
network. Table II reports mean values of the total number of
fractures, the total surface area of fractures, and the number
of computational cells of the identified subnetworks along
with respective percentages of the full networks for the DFN
ensemble. On average, the shortest-path subnetworks make
up ≈2% of the total number of fractures and ≈7% of the
total surface area. These values indicate that the shortest paths
are composed of a few large fractures that span the domain
from the inlet to the outlet plane. The five shortest paths

TABLE I. Statistics of distributions for the first passage times
through the network (mean, μ; variance, σ 2), results of the two-
sample Kolmogorov-Smirnov test, and the Kullback-Leibler (KL)
divergence measure for subnetworks compared to the full network.

Subnetwork μ σ 2 KS p value KL

Shortest path 0.202 9.73 × 10−3 0.140 0.261 6.35 × 10−2

5 shortest paths 0.185 6.02 ×10−3 0.080 0.894 3.01 × 10−2

10 shortest paths 0.173 3.19 × 10−3 0.080 0.894 1.59 × 10−2

20 shortest paths 0.171 3.21 × 10−3 0.080 0.894 6.99 ×10−3

2-core 0.173 3.51 × 10−3 0.050 0.999 1.03 ×10−3

Full network 0.175 3.61 × 10−3

contain a few more fractures and show an increase in surface
area. On average, the ten shortest paths contain double the
number of fractures as the shortest path but less than double
the surface area. Because the shortest path is contained within
the ten shortest paths, these values further indicate that the
shortest paths are composed of larger fractures. The 2-core
subnetworks contain ≈56% of the total number of fractures
and ≈75% of the surface area. Thus, the complement of the
2-core, the dead-end fractures, makes up half of the network
by number and consists of mostly small fractures.

The consequences of these reduced mesh sizes with respect
to computational time are provided in Table III and shown
in Fig. 6. The average required wall clock time for the
three primary sections of the DFNWORKS work flow (network
meshing, pressure simulation, and transport simulation) are
provided. Computations are performed using a server that has
64 cores (1.4 GHz AMD OpteronTMprocessor 6272 with 2048
kB of cache each. Meshing is performed in parallel using either
16 cores or the total number of fractures, whichever is less.
The flow solution is determined using 16 cores. Transport is
performed using a single core. The time required for network
generation prior to meshing is not included in the comparison
because it is required for every network and subnetwork, but
it is on the order of 1 s per network. The computation of the
shortest paths, k shortest paths, and 2-core subgraphs using
NETWORKX take less than 1 s each and those times are also
omitted.
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TABLE II. Mean values for geometric observables in the subnetworks identified using subgraphs: No. F, number of fractures; SA, network
surface area; No. cells, number of computational cells. (·) are the percentages of these values when compared to the mean values of the total
network.

Subnetwork No. F (%) SA (m2) (%) No. cells (%)

Shortest path 8.55 (1.91) 6.12 ×102 (6.54) 1.99 × 104 (2.44)
5 shortest paths 12.05 (2.69) 8.12 × 102 (8.66) 2.90 × 104 (3.56)
10 shortest paths 17.55 (3.92) 1.08 × 103 (11.54) 4.43 × 104 (5.44)
20 shortest paths 25.69 (5.74) 1.43 × 103 (15.25) 6.51 × 104 (8.07)
2-core 247.78 (55.39) 7.07 × 103 (75.40) 5.44 × 105 (66.88)
Full network 447.34 (100.00) 9.37 × 103 (100.00) 8.13 × 105 (100.00)

In terms of total run time, the k-shortest-paths subnetworks
are over an order of magnitude faster than the full network. The
networks contain significantly fewer fractures to mesh, which
results in fewer degrees of freedom in the linear system of
pressure and faster solver convergence. The time required for
transport is also drastically reduced because a smaller number
of fractures intersect the inlet plane and thus fewer particles
are inserted into the domain. The time required for the 2-core
is less than that for the full network, but is the same order of
magnitude.

V. REMARKS

We have presented a graph-based method to reduce the
computational cost of obtaining first passage times through
sparse fracture networks. The graph representation of the DFN
is derived using the network topology and flow boundary
conditions. The preimage of each subgraph is a unique
subnetwork because the mapping between the DFN and the
graph is a bijection. All edges in the graphs have unit weight,
so the shortest topological paths in the graph, which have the
fewest edges between the source and the target, correspond to
the fewest fractures between the inflow and outflow boundaries
in the DFN. The subnetworks corresponding to the shortest
topological paths tend to be composed of large fractures that
are the principal highways for transport through the network
(Table II). Once the primary paths have been identified, the
size of the fractures added to the subnetworks decreases
with additional numbers of shortest paths included into the
subgraphs. This stabilization of the subnetwork structure is
why the number of edges in the subgraphs plateaus as the
number of shortest paths increases; its derivative decreases
rapidly and then tends towards zero (Fig. 3).

In scientific computing there is commonly a tradeoff
between accuracy and efficiency. Here, the tradeoff is clear

when considering the values reported in Tables I, II, and III
and images shown in Figs. 5 and 6 that compare first passage
times predicted using subnetworks and their associated com-
putational cost. While the shortest path and the five shortest
paths require the smallest CPU times, they provide the worst
estimates of first passage times. This inaccuracy is apparent
from the wide scatter seen in Fig. 5 that is quantified by
the low values of the coefficient of determination (R2 = 0.54
and R2 = 0.57). Using the ten shortest paths requires slightly
more CPU time, but the predictions of first passage times
are significantly improved (R2 = 0.86). The primary paths
through the network, discussed above, are included in the first
ten shortest paths for all networks. Thus, the 20 shortest paths
resulted in only minor modifications to the subnetworks and
relatively little increase in accuracy (R2 = 0.90). The 2-core
of the graph, an upper bound on all shortest paths between
the source and target, provided the best predictions of first
passage times (R2 = 0.99). However, the CPU time required
for computation on the 2-core subnetwork was 75% of that
needed for the full network, underscoring the aforementioned
tradeoff between accuracy and efficiency. In terms of the
distributions of first passage times from the entire set of
networks, values obtained in the 10- and 20-shortest-paths
networks and the 2-core were very similar to those obtained
from the full networks [Fig. 5(f) and Table I].

The variable mesh resolution with local refinement around
intersections plays a subtle role in reducing mesh size and the
cost of computing first passage times. The number of cells
in the mesh is proportional to the fracture surface area and
the density of the subnetwork, which is significantly less for
the subnetworks compared to the full network. When fractures
are excluded from a subnetwork, their intersections on retained
fractures do not exist. Thus, there are fewer intersections in the
subnetworks that are refined with a high resolution conforming

TABLE III. Mean in wall clock time (seconds) for meshing, flow, and transport simulations in the full networks and subnetworks. Meshing
is performed with either 16 cores or the total number of fractures, whichever is less. Flow solutions are performed using 16 cores. Transport is
performed using a single core. (·) are the percentages of these values when compared to the mean values of the total network.

Network Meshing (s) (%) Flow (s) (%) Transport (s) (%) Total (s) (%)

Shortest path 21.99 (5.28) 7.65 (4.27) 19.67 (1.88) 49.31 (3.00)
5 shortest paths 38.20 (9.17) 10.69 (5.96) 24.57 (2.35) 73.46 (4.47)
10 shortest paths 39.35 (9.44) 8.17 (4.56) 32.60 (3.11) 80.12 (4.87)
20 shortest paths 64.92 (15.58) 15.47 (8.63) 57.78 (5.51) 138.17 (8.41)
2-core 287.69 (68.35) 102.79 (57.30) 874.64 (83.47) 1265.12 (76.96)
Full network 416.68 (100.00) 179.36 (100.00) 1047.75 (100.00) 1643.79 (100.00)
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FIG. 6. Average wall clock time required for meshing (blue),
flow simulation (red), and transport (green). Values are provided in
Table III. In total run time, k-shortest-path subnetworks are over an
order of magnitude faster than the full network. The time required
for the 2-core, an upper bound on all shortest paths from source to
target, is less than that for the full network, but is the same order of
magnitude.

mesh and the number of cells in the mesh is reduced by more
than the number of cells on the omitted fractures.

First passage times through the subnetworks deviate from
those obtained using the full network for a number of reasons.
The largest differences occur in networks where the fastest
particle does not travel along the shortest topological path.
In such situations, the subnetwork based on the shortest path
cannot produce the desired value. The slowest passage times
through the shortest-path subnetworks relative to the full
network are the result of this issue [cf. top left corner of
Fig. 5(a)]. Including the five shortest paths mostly alleviates
this problem, but there are still networks where the fastest
path is not contained in these subnetworks. The union of the
ten shortest paths provides much better agreement with the
full network because the path taken by the fastest particle is
always contained within the first ten shortest paths. Even here,
however, the match is not perfect. In this case, deviations
in first passage times are due to differences between the
in-fracture flow fields in the subnetwork and the full network.
When fractures are omitted from a subnetwork, the in-fracture
velocity field is different from the full network because it is
sensitive to the in-plane geometry, e.g., the intersections with
other fractures. The absence of these intersections decreases
in-plane dispersion and can reduce travel time. For the 2-core
subnetworks, the in-plane flow fields are more similar to the
full networks because fewer fractures have been omitted. The
absence of dead-end fractures modifies the local flow field
on the remaining fracture planes because dead-end fractures
are not necessarily no-flow regions, as is the case in two-
dimensional simulations.

How many paths are needed to obtain good approximations
for the fastest travel times is linked to how much of the graph is
included (Fig. 3) and will vary with different DFN generation
parameters. When the amount of the graph included with
additional shortest paths is changing rapidly, the predicted
values of first passage times are less accurate than when the
derivative of this function is relatively stable. For the networks
we considered, the ten shortest paths are a reasonable choice
because it balanced accuracy and computational efficiency. For
different network structures one should examine the scaling
of edge counts with the number of shortest paths to select
an appropriate number of paths. A conservative estimate for
the number of shortest paths needed would be the value of k

where this function’s derivative has flattened out [Fig. 3(b)].
However, if this function does not stabilize, then the proposed
method will likely not perform well.

Our test DFN set is composed of sparse semigeneric
fracture networks whose radii follow a truncated power-law
distribution, similar to many observed fracture sites [35].
Under the assumption of a positive correlation between a
fracture’s size and its transmissivity, the large fractures that
make up the shortest paths are both the principal geometric
pathways and hydrological fast paths. Hyman et al. [17]
found that the adoption of this correlation did not signifi-
cantly influence where the majority of transport occurred in
similar networks, only how fast it traveled. Therefore, the
proposed method should work in sparse networks where this
correlation is weaker or even nonexistent, but only if the
principal constraints on flow field structure are topological
rather than hydrological. In sparse fracture networks, flow
structure is primarily determined by the macroscale structure
of the network and the direction of flow. In dense networks,
mesoscale features, e.g., fracture permeability, and microscale
attributes, e.g., in-fracture aperture variability, might be the
principal controls of the flow structure. In these networks,
the incorporation of hydrological parameters into the graph
representation might be required to properly identify the sub-
networks where flow channeling occurs. Such incorporations
warrant further investigations and are the subject of ongoing
research.
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