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We study resonant spatially periodic solutions of the Lengyel-Epstein model modified to describe

the chlorine dioxide-iodine-malonic acid reaction under spatially periodic illumination. Using

multiple-scale analysis and numerical simulations, we obtain the stability ranges of 2:1 resonant

solutions, i.e., solutions with wavenumbers that are exactly half of the forcing wavenumber. We

show that the width of resonant wavenumber response is a non-monotonic function of the forcing

strength, and diminishes to zero at sufficiently strong forcing. We further show that strong forcing

may result in a p/2 phase shift of the resonant solutions, and argue that the nonequilibrium Ising-

Bloch front bifurcation can be reversed. We attribute these behaviors to an inherent property of

forcing by periodic illumination, namely, the increase of the mean spatial illumination as the

forcing amplitude is increased. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4921768]

Spatial periodic forcing of a pattern forming system is

a means of controlling spatial patterns. The degree of

control that can be achieved is limited by the ability

of the system to resonate with the forcing and to fol-

low the wavenumber the forcing dictates. The com-

mon understanding is that stronger forcing leads to

greater resonance ability. We use the Lengyel-Epstein

(LE) model of the chlorine dioxide-iodine-malonic

acid (CDIMA) reaction to show that sufficiently

strong forcing may instead reduce the system’s ability

to resonate with the forcing. We derive this and addi-

tional results using a multiple-scale, nonlinear analysis

of the model, complemented by numerical simulations.

These theoretical predictions can be tested by experi-

mental studies of the CDIMA reaction under spatially

periodic illumination.

I. INTRODUCTION

The extent and the manner by which non-oscillatory pat-

tern-forming systems can yield to an externally imposed spa-

tial periodicity is a subject of increasing interest.1–13 In 1D

systems, this spatial resonance problem reduces to the capa-

bility of a system to adjust the actual wavenumber, k, of the

pattern it forms to a fraction of an external wavenumber, kf,

provided that fraction is close enough to the wavenumber,

k0, formed by the unforced system. It is the spatial counter-

part of temporally forced oscillations and shares with the lat-

ter the property of an increased yielding capability as the

forcing strength is increased; the stronger the forcing, the

wider the wavenumber range in which the system can lock

its wavenumber to the forcing wavenumber. This property is

graphically described by Arnold tongues in the plane

spanned by the forcing wavenumber and the forcing

strength; anywhere within the n:m resonance tongue, the sys-

tem responses with a wavenumber k ¼ ðm=nÞkf , even though

k 6¼ k0. Arnold tongues of this kind have recently been com-

puted for a simple spatially forced pattern formation model

(the Swift-Hohenberg (SH) equation), assuming weak forc-

ing.6 Within any resonance tongue, the wavenumber of the

pattern that the system forms is controllable by the external

forcing.

In addition to increasing the controllability of the sys-

tem by widening the resonance range, the forcing allows for

new spatial patterns. This effect has been studied first in the

context of forced oscillations,14–19 and more recently in the

context of spatial forcing of pattern-forming sys-

tems.3,5,7,8,10 The new patterns that appear at sufficiently

strong forcing are related, in part, to the multiplicity of sta-

ble phase-locked states that exist within the tongues, and to

phase fronts that locally shift the phase from one state to

another. In oscillatory systems, the front shifts the oscilla-

tion phase, whereas in non-oscillatory pattern-forming sys-

tems it shifts the periodic-pattern phase. Within the 2:1

resonance, an increase in the forcing strength can result in a

pitchfork front bifurcation in which a pair of symmetric

phase fronts that smoothly shift the phase by p clockwise

and counter-clockwise merge into a single symmetric front

that makes a discontinuous p shift. This nonequilibrium

Ising-Bloch (NIB) bifurcation designates a transition from

traveling-wave to standing-wave patterns in temporally

forced oscillatory systems.20–22 A similar front bifurcation

in 2D spatially forced non-oscillatory systems23 has been

related recently to a transition from oblique to rectangular

patterns.24

In this paper, we study the 2:1 spatial resonance in the

LE model,25 which describes the dynamics of the CDIMA

reaction.26 The motivation for this study is a recent finding

1054-1500/2015/25(6)/064307/6/$30.00 VC 2015 AIP Publishing LLC25, 064307-1

CHAOS 25, 064307 (2015)

2016 20:40:43

http://dx.doi.org/10.1063/1.4921768
http://dx.doi.org/10.1063/1.4921768
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4921768&domain=pdf&date_stamp=2015-06-02


of a reversed NIB bifurcation in a spatially forced variant of

the LE model.24 We show that, unlike the picture that has

emerged from earlier studies,6,23 the effect of increasing the

forcing strength is not necessarily monotonic; the resonance

tongue can narrow and the NIB bifurcation can be reversed

at sufficiently strong forcing.

II. LE MODEL FOR A SPATIALLY FORCED CDIMA
REACTION

We use a modified 1D version of the LE model25 that

takes into account the effect of periodic illumination of the

reaction cell,

@tu ¼ a� u� 4uv

1þ u2
� w xð Þ þ @2

x u ;

@tv ¼ r b u� uv

1þ u2
þ w xð Þ

� �
þ d@2

x v

� �
: (1)

Here, u and v are dimensionless concentrations of iodide and

chlorite ions, respectively; a, b, d, r are dimensionless pa-

rameters, and w(x) denotes the rate of the photochemical

reaction, which is modulated by the spatially periodic illumi-

nation. The specific form we choose for w(x) is

w xð Þ ¼ w0 þ
c
2
þ p

2c
p

cos kf xð Þ ; (2)

where p is a binary constant assuming the values zero or one.

Equation (2) with p¼ 1 represents the first and largest term

in a Fourier cosine series of a square-wave forcing normally

used in experiments on the CDIMA reaction.4,24 The form

(2) preserves an inherent property of forcing by periodic illu-

mination, namely, that the spatial mean increases with the

forcing amplitude. The value p¼ 0 represents constant illu-

mination with no periodic modulations.

The LE model (1) with constant forcing (p¼ 0) has the

stationary uniform solution

u0 ¼
a

5
� w0 �

c
2
; v0 ¼ 1þ u2

0

� � w0 þ c=2

u0

þ 1

� �
: (3)

This solution goes through a Turing bifurcation to stationary

periodic patterns as b is decreased below a critical value

bT ¼
u0dk4

T

5 1þ u2
0

� � ; (4)

where

k2
T ¼ �5þ 2

ffiffiffi
5
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

0 � 1
� �

v0

u2
0 þ 1

� �2
þ 1

vuut ; (5)

and kT is the Turing wavenumber. The stationary uniform so-

lution also goes through a Hopf bifurcation to uniform oscil-

lations as b is decreased below another critical value

bH ¼ k2
Tðk2

T þ 10Þð1þ u2
0Þ=5ru0. To guarantee that the

Turing instability is the first to be encountered as b is

decreased, we chose values of a, r, d so that bH< bT. We

further focus on the 2:1 resonance, for which kf� 2kT.

III. NONLINEAR ANALYSIS OF THE LE MODEL

We consider the vicinity of the Turing bifurcation point

bT by introducing a small parameter, e, which represents the

deviation from bT,

e ¼ 1� b=bT � 1 : (6)

We further assume weak forcing

c ¼ jejc1 ; c1 � Oð1Þ ; (7)

and introduce a small detuning parameter, �, which repre-

sents the deviation from exact 2:1 resonance,

� ¼ kT �
kf

2
¼ jej1=2�1 ; �1 � O 1ð Þ : (8)

Near the Turing bifurcation and in the vicinity of the 2:1

resonance, where kf� 2kT, the solution of Eq. (1) can be

approximated as

u
v

� �
� u0

v0

� �
þ 1

a

� �
Bei

kf
2

x þ c:c: ; (9)

where c.c. stands for the complex conjugate. Using multiple-

scale analysis, we find that the amplitude B satisfies the

equation

s@tB ¼ lB� gjBj2Bþ CB? þ ð@x � i�Þ2B : (10)

Further details including the derivation of Eq. (10) and the

values of the coefficients in terms of the LE model (1) are

given in the Appendix.

FIG. 1. The coefficients g (a) and C (b) of the amplitude equation (10) as

functions of the LE model parameters a and c. Note that g becomes negative

at sufficiently large a values and that the dependence of C on c is non-

monotonic. Parameters: kf/kT¼ 1.8, d¼ 1, w0¼ 0, and r¼ 20.
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Figure 1(a) shows the coefficient g of the cubic term in

Eq. (10) as a function of the parameter a in the LE model (1)

for different values of the forcing strength c. For a sufficiently

large the parameter g becomes negative and the amplitude

equation (10) is no longer valid; higher order terms should be

included in the derivation to counteract the unbalanced growth

of the amplitude. We therefore restrict our analysis to g> 0.

Figure 1(b) shows the coefficient C in the amplitude equation

(10) as a function of the forcing strength c for different values

of a. Surprisingly, this function is not monotonic. Moreover, C
can assume negative values for sufficiently strong forcing.

An equation similar to Eq. (10) has been derived earlier

for a spatially forced SH equation, which can be regarded as

the simplest model that captures a nonuniform (finite wave-

number) stationary instability of a uniform state.5,7 In that

case, the coefficient C is linearly related to the forcing

strength c and the effect of the forcing is monotonic. The

implications of the non-monotonic behavior found in the LE

model are discussed in Sec. IV.

IV. RESONANT PATTERNS

The solution form (9) implies that stationary resonant

patterns, i.e., patterns whose wavenumber is exactly kf/2,

correspond to constant solutions of Eq. (10). The existence

range of such solutions defines the 2:1 resonance tongue.

Expressing the amplitude B in terms of its modulus q ¼ jBj
and phase / ¼ ArgðBÞ, that is B ¼ q expði/Þ, such constant

solutions are given by

q0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� �2 þ C cos 2/0ð Þ

g

s
; and /0 ¼ 0;

p
2
; p;

3p
2

	 

:

(11)

These solutions exist for l� �2 þ C cosð2/0Þ > 0.

To study the linear stability of these solutions, we first

consider the stability to uniform phase perturbations.

Inserting B ¼ q expði/Þ into Eq. (10), assuming a spatially

uniform phase, we find that the equation for the phase decou-

ples from that of the modulus and is given by

s@t/ ¼ �C sin 2/. The stability of the solutions B0 ¼
q0 expði/0Þ to phase perturbations is determined by the sign

of the eigenvalue k ¼ �2C cos 2/0. It is readily seen that for

C> 0 the solutions with /0 ¼ p=2; 3p=2 are unstable, while

for C< 0 those with /0 ¼ 0; p are unstable.

We consider now the stability of B0 to general perturba-

tions and write a perturbed solution as Bðx; tÞ ¼ B0 þ dBðx; tÞ,
where

dBðx; tÞ ¼ aþðtÞeiqx þ a?�ðtÞe�iqx : (12)

Inserting this form into Eq. (10) and linearizing, we find

_aþ
_a�

� �
¼ J

aþ
a�

� �
; J ¼ Dþ C

C? D�

� �
; (13)

where D6 ¼ l� 2gjB0j2 � ðq7�Þ2 and C ¼ C� gB2
0. The

stability properties of the resonant solution B0 are deter-

mined by the eigenvalues,

k6 qð Þ ¼
Dþ þ D�

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ þ D�

2

� �2

� DþD� þ jCj2
s

;

(14)

of the Jacobian matrix J. To determine the stability range of

the solution B0 within its existence range, we demand that

k6(q)< 0 for any given wavenumber q. The wavenumbers

that maximize kþ are

qc ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�4 � jCj2

q
2�

if � �2 < l < 3�2 ;

0; otherwise ;

8>><
>>: (15)

where we have considered only kþ, because kþ> k�.

Inserting the critical wavenumbers (15) into the eigenvalue

expression (14), we find the stability domains of the resonant

solution in terms of the amplitude equation parameters l, �,

and C and the phase of the solution B0,

C cos 2/0 >
l� 3�2
� �2

8�2
if � �2 < l < 3�2 ;

C cos 2/0 > 0; otherwise :

8<
: (16)

To connect the results of the amplitude equation stabil-

ity analysis in Eq. (16) to the LE model (1), we plot the sta-

bility regions in the ðc; kf=kTÞ parameter plane. Figure 2

shows the existence and stability ranges of the symmetric

resonant periodic solutions, B0 ¼ q0 expði/0Þ; /0 ¼ 0; p, in

the forcing-parameters plane ðc; kf=kTÞ, based on the analyti-

cal results. Also shown in Fig. 2 are computational results of

the stability region using direct numerical solutions of the

LE model (1). The numerical and analytical results are in

good agreement especially for smaller forcing and detuning.

Notice that the resonance range of stable solutions first

increases with the forcing strength c, reaches a maximum

and then decreases until it vanishes. This surprising behavior

results from the non-monotonic dependence of C on c (see

Fig. 1).

For the parameters used to produce Fig. 2, the resonant

solutions with phases /0 ¼ p=2; 3p=2 exist for sufficiently

small c, but are unstable. Figure 3 shows a similar diagram

FIG. 2. Existence and stability domains of resonant solutions, B0, of Eq. (10)

with /0 ¼ 0; p. The light gray areas indicate the existence domain, while the

dark gray area shows the stability region. The black curve demarcates the

borders of the numerically computed stability region using the LE model (1).

Parameters: a¼ 10.5, r¼ 20, d¼ 1, w0¼ 0, and b¼ 0.25. For these parame-

ters, the solutions with /0 ¼ p=2; 3p=2 are unstable.
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using a different set of LE parameters values for which the

/0 ¼ 0; p solutions (Fig. 3(a)) are stable for small c, whereas

the /0 ¼ p=2; 3p=2 solutions (Fig. 3(b)) become stable for

sufficiently large c values. The swap in the stability proper-

ties of the solutions is due to the change in sign of C as is

shown in Fig. 1(b).

The spatial profiles of the resonant solutions relative to

the forcing are shown in Fig. 4. The figure demonstrates that

both type of solutions, that is /0 ¼ 0; p (Fig. 4(a)) and p/2

shifted one (Fig. 4(b)), can be stable for the same unforced

system parameters but with different forcing strength.

The amplitude equation (10) has stationary front solu-

tions that are bi-asymptotic to the pair of symmetric phase

solutions, /0 ¼ 0; p for C> 0. These solutions go through a

NIB bifurcation, from an Ising front to a pair of Bloch fronts,

as C is decreased below a threshold value.20 Since C is a

non-monotonic function of the forcing strength c, the bifur-

cation from Ising to Bloch fronts may occur as c is increased.

Indeed, such a reversed NIB bifurcation has been found in

the forced LE model.24

V. DISCUSSION

The non-monotonic dependence of the coefficient C of

the forcing term in the amplitude equation (10) on the forc-

ing strength, represented by the parameter c in the LE model

(1), has several consequences. First, it narrows down the res-

onance range at high forcing strengths until it vanishes. This

is a significant result when using spatial forcing to control

the wavenumber of a system; stronger forcing may reduce

the control capability. Second, the NIB bifurcation may be

reversed, since C can decrease as c is increased. Moreover, a

range of c that capture both forward and backward NIB

bifurcations may be identified. Third, for sufficiently large c,

the coefficient C can change sign. This renders the phase sol-

utions /0 ¼ 0; p unstable and stabilizes the /0 ¼ p=2; 3p=2

solutions for which maxima of the controlled pattern corre-

spond to minima of the forcing.

The non-monotonic dependence of C is related to the

form of the periodic forcing; rather than oscillating about a

constant mean, often taken to be zero, the mean increases

with the forcing amplitude. In the present study, this form is

motivated by physical grounds; the intensity of the periodic

illumination is bounded below by zero and increasing its am-

plitude implies increasing its mean value too.

Using a spatial forcing regime with an increasing mean

may result in non-monotonic behavior in other systems too.

An example of such a system is a dryland landscape with

restored vegetation. Vegetation restoration can be achieved

by periodic soil-crust removal, which increases the infiltra-

tion rate of surface water into the soil periodically in space,

and forms domains of favorable growth conditions.13

Moreover, a similar effect may hold for temporal forcing of

oscillating systems. The LE model captures also a Hopf

bifurcation which accounts for oscillatory and traveling-

wave dynamics in the CDIMA reaction.26 A non-monotonic

relation between C and c that results in both forward and

backward NIB bifurcations may lead, in such a context, to an

extended range of Bloch-front turbulence,17 a state of spatio-

temporal chaos nurtured by spontaneous events of spiral-

wave nucleation.27

FIG. 3. Existence and stability domains of resonant solutions, B0, of Eq.

(10) for (a) /0 ¼ 0;p solutions and (b) /0 ¼ p=2; 3p=2 solutions. The light

gray areas indicate the existence domain, while the dark gray area shows the

stability region. Parameters: a¼ 10, r¼ 50, d¼ 1, w0¼ 0, and b¼ 0.185.

FIG. 4. The shape of periodic resonant solutions at different forcing

strengths in the LE model (1). The dark curves represent the solutions v – v0

and the gray curves are the forcing w(x). (a) Weak forcing leads to resonant

periodic solutions with phases /0 ¼ 0; p for which maxima of the solution

coincide with maxima of the forcing (c¼ 0.1). (b) Strong forcing leads to

resonant periodic solutions with phases /0 ¼ p=2; 3p=2 for which maxima

of the solution coincide with minima of the forcing (c¼ 0.5). Parameters:

kf/kT¼ 2, d¼ 1, w0¼ 0, b¼ 0.185, a¼ 10, and r¼ 50.
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APPENDIX: DERIVATION OF AMPLITUDE EQUATION

We describe here the derivation of the amplitude equa-

tion (10) using multiple scale analysis.28,29 The solution that

appears beyond the Turing bifurcation has the approximate

form

u
v

� �
� u0

v0

� �
þ 1

a

� �
AðX; TÞeikT x þ c:c: ; (A1)

where A describes the complex-valued amplitude of the

Turing mode that grows beyond the instability and a is a

constant. Near the Turing bifurcation, we expect A to be

small in absolute value, i.e., jAj � 1, and to vary slowly in

space and time. To capture these properties of A, we define

the slow variables

T ¼ jejt; X ¼ jej1=2x ; (A2)

so that j@tAj ¼ ej@TAj � jAj � 1 and j@xAj ¼ e1=2j@XAj
� jAj � 1. Using the chain rule, we transform the time and

space derivatives according to

@t ! jej@T ; @x ! @x þ jej1=2@X ; (A3)

where @x acts only on fast varying factors, such as expðikTxÞ,
and @X and @T act only on slowly varying factors that involve

the amplitude A.

Expanding the solution to Eq. (1) as

u

v

� �
¼

u0

v0

� �
þ jej1=2 u1

v1

� �
þ jej

u2

v2

� �
þ jej3=2 u3

v3

� �
þ ::: ;

(A4)

substituting all expansions into the LE model (1), and group-

ing terms by their order, we find at order jej1=2
,

L u1

v1

� �
¼ 4f1 � 5þ @2

x �4f2

rbTf1 �rbTf2 þ dr@2
x

� �
u1

v1

� �
¼ 0 ;

(A5)

where

f1 ¼ 1þ 2u2
0

u2
0 þ 1

� �2
� 1

u2
0 þ 1

 !
v0 ; f2 ¼

u0

1þ u2
0

: (A6)

We consider the operation of L on a vector space of periodic

functions with period L¼ 2p/kT on which the following inner

product between any two vector functions f¼ (f1, f2) and

g¼ (g1, g2) is defined:

hf ; gi ¼
X
i¼1;2

ðL

0

f �i gidx : (A7)

The solution of this linear equation is

u1

v1

� �
¼ 1

a

� �
~AðX; TÞeikT x þ c:c: ; (A8)

where

a ¼ k2
Tðk2

T þ 5Þ=20f2 ; ~A ¼ e�1=2A ; (A9)

which is consistent with Eq. (A1).

At order jej,

L u2

v2

� �
¼ M

u1

v1

� �
� 4

rbT

� �
v1v1 � u1v2ð Þu1

� �1

rbT

� �
2c1

p
cos kf xð Þ ; (A10)

where M ¼ �2
�

1

dr

�
@x@X and

v1 ¼
u2

0 � 1

u2
0 þ 1

� �2
; v2 ¼

u0 u2
0 � 3

� �
v0

u2
0 þ 1

� �3
: (A11)

In order for (u2, v2) to belong to the vector space of periodic

functions, the right-hand side of Eq. (A10) should be orthog-

onal to the null space of L†

, the adjoint of L. The adjoint op-

erator is given by

L† ¼ 4f1 � 5þ @2
x rbTf1

�4f2 �rbTf2 þ dr@2
x

� �
; (A12)

and its null space is spanned by

h6 ¼
�1

1=ard

� �
e6ikT x ; (A13)

that is, L†

h6 ¼ 0. It is straightforward to verify that the

right-hand side of Eq. (A10) is indeed orthogonal to h6 and

no solvability condition is needed at this order.

The solution at this order reads

u2

v2

� �
¼ c1

c2

� �
~Ae2ikT x þ 0

c3

� �
j ~Aj2 � c4

c5

� �
2c1

p
eikf x

þ 1

4f2

0

1

� �
M ~AeikT x þ c:c: ;

(A14)

where c3 ¼ 2ðav1 � v2Þ=f2 and

c1

c2

 !
¼ c3

9

8f2=k2
T

4k2
T þ 5

� �
=10

 !
;

c4

c5

 !
¼

k2
f þ k4

T

� �
=2 k2

f � k2
T

� �2

k4
T �4k2

f þ k4
T þ 10k2

T þ 5
� �

=40f2 k2
f � k2

T

� �2

0
BB@

1
CCA :

(A15)
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Finally, at order jej3=2
we obtain

L
u3

v3

 !
¼ @T

u1

v1

 !
� @2

X

u1

drv1

 !

þ rbT

0

f1u1� f2v1

 !
þM

u2

v2

 !
þ

4

rbT

 !

� v2

u2
1v1

v0

þ 2u2u1

� �
� v1 u2v1þ u1v2ð Þ � v3u3

1

� �
;

(A16)

where

v3 ¼
u4

0 � 6u2
0 þ 1

� �
v0

u2
0 þ 1

� �4
: (A17)

Applying the solvability condition on the right-hand side of

Eq. (A16), going back to the fast variables, and replacing the

amplitude ~A by

B ¼ jej�1=2 ~Aei�1X ; (A18)

we obtain the amplitude equation (10),

s@tB ¼ lB� gjBj2Bþ CB? þ ð@x � i�Þ2B ; (A19)

where the coefficients that appear in the equation are

s ¼ dr� 1ð Þ k2
T þ 5

� �
20dr

; l ¼ af2 1� b

bT

� �
;

C ¼ 2c
p

c4 �av1 þ 2v2ð Þ � c5v1½ � ;

g ¼ �v1 ac1 þ c2 þ c3ð Þ þ v2 2c1 þ
3a
v0

� �
� 3v3 : (A20)

Note that both C and g are independent of b.
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