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Abstract Shortest path network interdiction is a combinatorial optimization problem on an activity net-
work arising in a number of important security-related applications. It is classically formulated
as a bilevel maximin problem representing an “interdictor”and an “evader”. The evader tries to
move from a source node to the target node along a path of the least cost while the interdictor
attempts to frustrate this motion by cutting edges or nodes.The interdiction objective is to find
the optimal set of edges to cut given that there is a finite interdiction budget and the interdictor
must move first. We reformulate the interdiction problem forstochastic evaders by introducing
a model in which the evader follows a Markovian random walk guided by the least-cost path to
the target. This model can represent incomplete knowledge about the evader, and the resulting
model is a nonlinear 0− 1 optimization problem. We then introduce an optimization heuris-
tic based on betweenness centrality that can rapidly find high-quality interdiction solutions by
providing a global view of the network.

Keywords Network Interdiction; Stochastic Optimization; Guided Random Walk; Betweenness Centrality;
LA-UR-08-06551

1. Introduction
Mathematical modeling of network interdiction originatedin the study of military supply chains and
interdiction of transportation networks [11, 17]. The problem is currently studied in different classes
of networks and in a variety of contexts, and finds applications in countering of nuclear proliferation
programs [19], control of infectious diseases [23], and disruption of terrorist networks [18]. The
underlying networks may represent transportation networks, as well as social or activity networks.
Recent interest in the problem has been in part due to the threat of smuggling of nuclear materials
and devices [21]. Interdiction corresponds to the installation of special radiation-sensitive detectors
across transportation links.

The problem is often posed in terms of two agents called “interdictor” and “evader” where the
evader attempts to minimize some objective function in the network,e.g.distance, cost, or risk when
traveling from network locations to locationt, while the interdictor attempts to limit success by
removing network nodes or edges. The interdictor has limited resources and can thus only remove
a finite set of nodes or edges. In the simplest formulation, the interdictor seeks to identify a set of
edges (or nodes) on the network whose removal maximizes the cost of the least-cost path from a
source to a destination node, while the evader seeks to find and traverse the best unimpeded path.
This interdiction problem is known as the “most vital edges”(or “most vital nodes”) problem [8]
and it has been shown to be NP-hard [3] and NP-hard to approximate to better than a factor of
2 [6]. Methods for solving network interdiction problems have included exact algorithms for solving
integer programs, such as branch-and-bound, as well as decomposition methods to rebuild the net-
work by iteratively adding relevant paths to reduce the sizeof both the underlying network and the
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number of binary decision variables. A more recent approach, based on structure-dependent cutting
planes, exploits the relationship between the ordered set of evasion paths and binary interdiction
variables [22].

A common assumption in many studies is that there is perfect knowledge of hard-to-compute
network parameters, such as the cost to the evader to traverse an edge in terms of resource con-
sumption or probability of detection. However, it is clear that the evader, and, to a lesser extent,
the interdictor, have unreliable and incomplete information about the network. These uncertainties
place the interdiction problem within stochastic optimization, where one seeks to find those edges
that are vitalon average. Indeed, under uncertainty the evader must be described in probabilistic
terms. By constructing such probabilistic evader models one can expect to develop more robust inter-
diction solutions. The problem of stochastic interdictionhas been the focus of a number of recent
studies [19, 1, 5, 16, 24, 13, 9].

Failure to account for evader uncertainty can lead to suboptimal decisions, namely, solutions
that do not maximize (and even decrease) the evader’s expected cost to reach the target. Consider
for instance the network in Fig. 1. There are four paths from the source to the target: one each
through nodes 1,2,3 and the one direct path(0,5) with costs 9,8,8 and 8.01, respectively. If only
one edge can be removed, the solution in the least-path-costformulation is to remove edge(4,5)
which increases the path cost from 8.0 to 8.01. However if the evader is unable to determine which
path has the least cost and takes any path with equal (or nearly equal) probability, then this solution is
not optimal. Interdiction at(4,5) actuallydecreasesthe expected cost from≈ 8.25 to 8.01, because
it removes the costly path through node 1. The optimal choiceis interdiction of any one of the edges
(0,2), (2,4), (0,3), or (3,4), which increases the expected cost from≈ 8.25 to≈ 8.33.
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FIGURE 1. Example network where the shortest path interdiction formulation produces a suboptimal solution
when interdicting a single edge. Interdicting that edge(4,5) decreases the expected path cost. Interdicting any
one of(0,2), (2,4),(0,3), or (3,4) increases the expected path cost.
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In this paper we describe a Markovian network interdiction framework which can capture a wide
range of network evader behavior (Sec. 2). We then demonstrate the general framework with a
simple model based on evader decision-making mechanisms (Sec. 4). Finally we develop efficient
heuristic algorithms for the interdiction problem based onthe structure of the graph and then present
performance results comparing various heuristic methods (Sec. 5).

2. The interdiction model
Our interdiction formulation is a stochastic generalization of the max-min shortest path interdiction
problem (termed the “least-cost path” interdiction problem, to be exact) [11, 17, 15]. In the least-cost
path formulation an evader attempts to traverse a network ona path from an origins to a destination
t. Let p be some path betweens andt in a graphG(N,A) with the set of nodesN and the set of
weighted edgesA. Let c(p) be the path cost computed by summing the costCi j over the edges(i, j)
of p, and any self-looped edge has zero cost,Cii = 0 . The edge costs are assumed to be given in
the problem and may depend on direction (in the case thatG(N,A) is a directed graph). Here “edge
cost” is used interchangeably with “edge weight”.

The network interdiction strategy is represented by an interdiction setR which is a subset of
the edge setA of b (budget). The decision variabler i j is set to 1 if edge(i, j) ∈ R, i.e. (i, j) is
interdicted, andr i j = 0 otherwise. Interdiction increases the cost of traversing(i, j) by a constant
Di j ≥ 0. When the value ofDi j is very large all paths avoid the interdicted edge(i, j) (assuming that
there is an alternative path) which effectively removes theedge(i, j) from the graph. One may write
C′i j =Ci j + r i j Di j but it is more convenient to useCi j at all times to denote cost that includes possible
interdiction. This makes the matrixC a function ofr.

In the shortest path model, the evader only travels on paths of lowest cost, and is fully aware of
increases in edge costs caused by interdiction decisions. This gives the optimization problem

max
r∈R

min
p∈PT

c(p) , (1)

wherec(p) is implicitly a function ofr, andPT is the set of paths froms to t. The above formulation
is for interdiction of edges but of course, a similar problemcould be considered for node interdiction
(by introducing for alli ∈ N node costsDi and decision variables on nodesr i .)

A stochastic version of the interdiction problem can be constructed by supposing that an evader
may take any path froms to t, according to some probability distribution, rather than always choos-
ing a least-cost path. Randomness in the evader path decision is due to the lack of knowledge of
how the evader travels through the network. It is fundamentally caused by his uncertainty about
interdiction decisionsr or network costs, mistaken cost computations, or possibly even by intent to
increase unpredictability. Suppose the evader selects path p with probabilityP(p). His expected cost
of traveling froms to t is then

E[c] = ∑
p∈PT

P(p)c(p) . (2)

The interdiction problem becomes

max
r∈R

∑
p∈PT

P(p|r)cr(p) , (3)

whereP(p|r) is now the probability of traversing a path given the interdiction setr. The conditional
probabilityP(p|r) implicitly contains the evader’s strategy. The shortest-path optimization problem
(1) is clearly just a special instance of (3) when the expectation is conditioned on traversal of only
least-cost paths.

To compute the expected costE[c], we rewrite it in terms of the edge costs and the number of
visits to each edge. IfFi j is the expected number of visits of edge(i, j) by an evader, then

Lemma 1.
E[c] = ∑

p∈PT

P(p)c(p) = ∑
(i, j)∈A

Ci j Fi j . (4)
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By definition Fi j = ∑p∈PT:(i, j)∈pP(p), andFi j can in general be larger than 1 because paths may
revisit (i, j). The equivalency follows as

E[c] = ∑
p∈PT

P(p)c(p) ,

= ∑
p∈PT

P(p) ∑
(i, j)∈p

Ci j ,

= ∑
(i, j)∈A

Ci j ∑
p∈PT:(i, j)∈p

P(p) ,

= ∑
(i, j)∈A

Ci j Fi j .

The expected costE[c] is now expressed through the expected number of visits to alledges (theFi j

values). The latter quantity may be hard to compute in general because every evader path could in
principle visit edge(i, j), while the number of possible paths can be very large and evenunbounded.
Fortunately, one particular class of stochastic models - Markov chains - gives a closed-form expres-
sion forFi j .

3. Markovian evaders
We model the stochastic evader as a Markov chain that has its states at the nodes of the network. In
the most general case, the chain is completely described by (1) a distribution of starting nodes,a,
and (2) a Markovian transition probability matrix,M . In the next section, we will provide derivations
of M for some realistic applications by examining the decision-making mechanisms of a rational
evader frustrated by uncertain information. Such an evadermakes transitions that tend to bring him
closer to his target.

Consider for now the most general case. The motion of the evader is just a Markov chain with an
absorbing state at the target nodet. An elementMi j of his transition probability matrix is the prob-
ability of motion from nodei to nodej along edge(i, j). The matrixM must satisfy two conditions
(1) Absorption att: Mtt = 1 andMti = 0 for all i 6= t, and (2) Access tot: from any starting state
i 6= t there is a positive probability of reaching statet in a finite number of transitions. Because of
condition (1) the transition matrix of an absorbing Markov chain can be arranged into the following
canonical form

M =

(

M̂ R
0 1

)

.

Here the matrixM̂ (n−1 by n−1) contains the transition probabilities among transient states. The
matrixR (n−1 by 1) specifies the probabilities of transition from the transient states to the absorbing
state.

Similarly, the edge cost matrix for an absorbing Markovian evader takes a specific form

C =

(

Ĉ S
Z 0

)

.

Here the matrix̂C (n−1 byn−1) contains the costs for transition among transient states. The matrix
S (n−1 by 1) specifies the costs for moving to the absorbing state, while Z (1 byn−1) are cost for
edges out of the absorbing states - those edges are never traversed. The elementCtt = 0 implies that
there is no cost to remain at the target nodet.

Based on the matrix̂M one constructs theFundamental MatrixN of the chain:

N = (I − M̂)−1

.

Theorem 1. Element Ni j of the fundamental matrix gives the expected number of visits to state j
if starting at state i (Theorem 11.4 in [12].)
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In general the starting state of the evader is given by a distributiona over the nodes. For convenience,
the absorbing nodet is excluded froma, which isn−1-dimensional. The expected number of visits
to (i, j) before absorption att is

Corollary 1.
Fi j = [aN]iMi j . (5)

The expected costE[c] for a Markovian evader can be found by substituting (5) into (4) [25],

Theorem 2.
E[c] = aNdiag

[

M̂ ĈT +RST
]

, (6)

where diag
[

M̂ĈT +RST
]

denotes the column vector of the diagonal elements of matrix

M̂ĈT +RST.

In a special case where the edge cost is always 1, i.e.Ci j = 1, ∀(i, j) ∈ A, E[c] in (6) reduces to the
well-known expression for expected time-to-absorption:aNe.

The objective in the Markovian network interdiction problem is to maximizeE[c]. In the interdic-
tion model, edge cost depends on the interdiction variabler. In turn, the transition matrix and the
fundamental matrix depend onr too. Therefore, this results in the nonlinear optimizationproblem

max
r∈R

aNdiag
[

M̂ĈT +RST
]

. (7)

This optimization problem could be termed theSingle Markovian Evader Network Interdictionprob-
lem. The distribution of starting nodes is assumed to be given and independent of the interdiction
strategyr, while theM matrix is assumed to be determined as soon as the graph andr are known.
In numerical computations the most computationally demanding part resides in findingaN= a(I −
M̂)−1, which require Gaussian elimination in general.

The problem in (7) can be generalized for the case of multipleevaders where each evader rep-
resents a threat scenario or an adversarial group. Each evader k then has certain probabilityw(k) of
occurring(∑k w(k) = 1), as well as a distinctive source distributiona(k), target nodet(k) and transition
matrixM (k). The generalized objective is a weighted sum of Eq. (6) over all evaders.

4. Evader models
As was noted in the introduction the evader may often be unable to determine correctly the least-cost
path to the target because of incomplete and inaccurate information about the network topology,
interdiction decisions, or costs along alternative paths.We now develop a concrete Markovian model
that incorporates uncertainty in the path of the evader. These types of models have analogues in other
contexts. For example, a similar model was developed for routing in ad-hoc wireless networks. In
that application the objective is to transmit messages through the network with short delivery leg
and balanced load [4].

4.1. The least-cost-guided evader
We suppose that at each nodei the evader will consider several paths fromi to t and select the one
thatappearsto have the lowest cost. Putting this in the content of a Markovian model, we definepi

be the least cost path fromi to t, with cost denoted byc(pi). Suppose the evader has a destinationt
and nodej is any node in the neighborhoodi ( j ∈Gi). The transition probability fromi to j is

Mi j =
e−λ(c(pi)−Ci j−c(p j ))

∑ j∈Gi
e−λ(c(pi)−Ci j−c(p j ))

, (8)

whereλ ≥ 0 is a parameter (see Fig. 2.)
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FIGURE 2. Computation of the transition probabilitiesMi j . The least-cost path from nodei to the targett is
the pathpi (thick red) with costc(pi) = 3. Through nodej the shortest path tot is (thin blue) pathpi with cost
Ci j +c(p j ) = 4.

The adherence to the least-cost path is determined by the parameterλ . Whenλ → ∞ the evader
moves deterministically along the least-cost path (or paths) and whenλ → 0 the motion is perfectly
random. The least-cost path has the highest probability, but the difference with other paths vanishes
asλ → 0. Hence, the model can be called the “least-cost-guided evader”.

Notice that althoughMi j values in Eq. (8) depend on the cost of least-cost path, whenλ < ∞ this
dependence is a smooth function of path costs. Thus the new formulation provides a more desirable
description of evader motion because it avoids the sensitivity to path costs seen in the shortest-path
evader model. The process of computing the probabilities involves running Dijkstra’s algorithm to
find the distance to the target node from each nodei, which givesc(pi).

4.2. The least-risk-guided evader
In some applications the evader may base decisions on the risk of crossing an edge rather than
the cost. In those cases the each edge in the network is assigned a valueYi j for the probability of
successful evasion, instead of a costCi j . The evader attempts to find the path to the targett that
offers the greatest probability of evasion which is is just the product of thoseYi j values along the
path.

Let qi j be the probability of successful evasion on a path consisting of the edge(i, j) and then of
the least-risk path fromj to the target. One choice is to assume that an evader would traverse edge
(i, j) with probabilityproportionalto qi j , or more generally, proportional to a positive power ofqi j

Mi j ∝
(

qi j

qi∗

)λ
, (9)

whereλ > 0 is a parameter,qi∗ = maxj qi j is the probability of evasion if the least-risk path fromi
to the target is followed (the constant of proportionality is found from∑ j Mi j = 1.)
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4.3. The non-retreating evader
A simple variant the least-cost-guided model is the non-retreating evader. In this model it is assumed
that an evader always moves to nodes that are closer to the target nodet than the current node. To
represent this model assume that there is zero probability of motion through(i, j) if nodei is at least
as close to the target as nodej, namely,c(pi)≤ c(p j), wherec(pi) andc(p j) are the smallest costs
of paths to the target from nodesi and j, respectively, computed by summing the edge weights.

An interesting effect of this assumption is that the evader evader would never cross a node or
an edge twice. Consequently the set of nodes becomes a partially ordered set and as a result, there
exists a relabelingσ of the nodes such that ifc(pi)> c(p j) thenσ(i)> σ( j). A simple (non-unique)
procedure is to label the target nodet as 0 (σ(t) = 0) and then rank the nodes in the order of their
distance (cost) along least-cost path tot, breaking ties arbitrarily. Computationally, this is the same
as the order the nodes are reached by a shortest path (Dijkstra’s) algorithm starting att. The transition
probability becomes

M̂i j =

{

Mi j , c(pi)> c(p j) ,

0, c(pi)≤ c(p j) .

In this case all paths must reach the target after at most|N| − 1 steps, where|N| is the number
nodes inG, and henceM̂ becomes nilpotent of power|N|−1. Moreover, by labeling the nodes up
in order of increasing cost,̂M can be written as a lower-triangular matrix with zero diagonal. For
example, if the evader traverses a 2×3 grid with the target at one corner then one possibleσ gives
the matrix

M̂ =

















0
1 0
1 0 0
0 1 0 0
0 0.5 0.5 0 0
0 0 0 0.5 0.5 0

















.

The special matrix structure facilitates an order-of magnitude speedup in the computation of Eq. 6.
For a generalM , computinga(I −M)−1 involves Gaussian elimination at a cost of 2|N|3/3 opera-
tions. For a nilpotent lower-triangular̂M the cost falls toO(|N|2) since we can use backward-forward
substitutions instead of Gaussian elimination. The cost ofcomputing the objective function Eq. (6)
is also expected to drop toO(|N|2) despite the need to reorder the matrixC when the nodes are
relabeled.

5. Solving the Markovian interdiction problem
The challenge of network interdiction consists of developing both realistic models and tractable algo-
rithms. The Markovian evader model adds realism but does notreduce the computational complexity
of finding good interdiction solutions. Indeed it is clear that the Markovian model is computationally
hard because in the limit ofλ → ∞, the model becomes the least-cost interdiction problem which is
NP-Hard [2, 3] and also hard to approximate [6]. Therefore, this section discusses solution heuristics
based on network structure.

A common approach to solving many combinatorial optimization problems is based on local,
or neighborhood, search algorithms such as simulated annealing [20]. But those general-purpose
local search algorithms do not scale well to larger problemsor find poor solutions. The solution
space may be exponential in the budget so any iterative improvement process of local search can
only explore a very small fraction of solutions in a polynomial number of steps. It follows that
high-quality solutions can only come from more specializedsolvers that exploit the structure of the
interdiction problem. We explore algorithms based on ranking functions that rank edges according
to global information about graph structure.
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5.1. Betweenness centrality heuristic
The most successful ranking function we found is derived from the shortest-path betweenness cen-
trality. The shortest-path betweenness centrality of an edge is the fraction of least-cost paths between
all pairs of nodes in a network that cross the edge [10]. This metric identifies those edges that are
critical to connectivity within a network, such as bridge edges that joins two graph components,
because they participate in a large number of least-cost paths linking nodes on a network,

We constructed an heuristic based on shortest-path betweenness centrality by considering only
paths between the sourcesa and the targett of the evader. Recall thatas is the probability that the
evader would start at nodes. Let σst,R be the number of least-cost paths between nodess and the
target nodet in the graph with interdiction setR. Similarly, letσst,R(e) be the number of those paths
that pass through edgee. Therefore, we define the source-weighted centrality of edgeewith respect
to t as the sum

HR(e) = ∑
s:t 6=s∈V

as
σst,R(e)

σst,R
. (10)

Notice that this quantity needs to be re-computed during execution of an interdiction problem: as
the interdiction setR is increased, the costs of the edges change and so are the least-cost paths. An
algorithm for calculating a metric of this kind for alle∈ A in O(|A|+ |N| log|N|) time is found in
Ref. [7]. In the case of multiple evaders, the heuristic is computed for each evader and weighted
based onw(k).

5.2. Algorithms
We use the betweenness heuristicHR(e) to rank the edgese in the network given the interdiction
setR. This heuristic leads to a simple algorithm, termed Betweenness (Alg. 1), that performs a
sequential selection of edges. The betweenness algorithm is fast since it does not evaluate the objec-

Algorithm 1 Betweenness algorithm using global heuristicH for budgetB
R←∅

while B> 0 do
R←R∪

{

argmaxe∈ArR HR(e)
}

, resolving ties arbitrarily.
B← B−1
Output (R)

tive function but only has to initially compute the ranking heuristic and then re-evaluate it after the
interdicted edge is chosen. The heuristic is calledB times: once for each of the budgeted edges.

For comparison we also use a more computational expensive greedy algorithm (Alg. 2) that con-
structs the interdiction setR incrementally. At each of theB steps, the greedy algorithm computes
∆R(e), the increase in the objective function due to addition of edgeeand then selects the best edge.

Algorithm 2 Greedy algorithm for the construction of the interdiction setR with budgetB
R←∅

while B> 0 do
for all e∈ A do
∆R(e) := h(R∪{e})−h(R)
R←R∪{argmaxe∈A ∆R(e)}, resolving ties arbitrarily.
B← B−1
Output (R)
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5.3. Performance results
We now demonstrate the performance of the Greedy and Betweenness algorithms on a sample net-
work interdiction problem and show the effect of varying therandomness parameterλ . We used a
network which consists of a 10×10 grid of directed edges with 10 added shortcuts between random
pairs of nodes for a total of 420 edges. Weights were assignedto each edge by choosing uniformly
at random from the interval [0.5, 1.5]. We selected 2 distinct targets at random (i.e. 2 evaders) each
with 5 source locations.

The motion of the evader followed the least-cost-guided model. In this model, the effect of the
parameterλ on the expected cost for the evader (before interdiction) isnot linear, as shown in Fig. 3.
At low values ofλ the motion is random and the cost is the highest. Asλ is increased the evader
follows paths that are closer to the optimal path and the costdecreases continuously toward the
minimum achievable at largeλ . The transition between the cost of random motion and the optimal
cost occurs rapidly over a small range ofλ where the most diverse behavior is found. This transition
in behavior was observed in other random and structured graphs and real-world networks that we
examined and is a feature of the nonlinear dependence of the path probabilities from Eq. (8).

10−4 10−3 10−2 10−1 100 101 102 103 104

λ
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FIGURE 3. The expected cost of reaching the target from the source a function of the parameterλ for an
example network. For large values ofλ the model chooses only the shortest path and the expected cost is
lowest. Asλ decreases the cost increases as the paths become more random. Forλ = 0 the paths are completely
random and the cost is at the maximum. The expected cost is calculated by Eq. (6) with the evader modelM
given by Eq. (8). The network is a 10×10 directed grid with 10 randomly added shortcut edges and the target
and source are chosen randomly. Each of the edges have weights chosen uniformly from [0.5,1.5]. The marked
points will be used in performance evaluations, presented in Fig. 4.

Fig. 4 shows characteristic performance results for both the Greedy and Betweenness algorithms
for variousλ . The performance is measured in terms of the expected cost given by Eq. (6). Inter-
diction of an edge causes the weight of the edge to increase bya fixed valueDi j . We set the added
increase to be half the diameter of the network which in this case isDi j = 4.5.
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FIGURE 4. Comparison of the Greedy (2) and Betweenness (1) algorithms for given budgets on the sample
grid network described in Fig. 3. Four different values ofλ are shown corresponding to different levels of
randomness in the evader path selection. When the randomness of the evader is low (highλ ) the Betweenness
algorithm performs very well compared to the higher computational cost Greedy algorithm. As the randomness
increases the algorithms’ performance diverges after verysmall budgets - demonstrating that the Betweenness
heuristic is no longer effective. At low values ofλ the evader motion is random and no algorithm will be
effective. The convergence of the algorithms at large budgets occurs because we do not allow an edge to be
interdicted more than once and at that budget every edge in the graph is interdicted and the costs are the same.

For small budgets the Betweenness algorithm and Greedy algorithm produce comparable results
as measured by the increase in cost for allλ values. The Betweenness algorithm is considerably
cheaper in computational cost. As the budget is increased the Betweenness heuristic performs very
well for largerλ . But for smallerλ , as the evader randomness increases, the algorithm performance
difference diverges indicating that the Betweenness heuristic is no longer effective. At very low
values ofλ the evader motion is random and no algorithm is expected to beeffective.

A particularly interesting phenomenon is the non-monotonicity of the expected cost. Namely, for
some lowλ values the expected costE(c) sometimes actually decreases after the interdiction set is
enlarged. This effect was anticipated by the example in Fig.1 and it occurs because the behavior of
the randomizing evader is fundamentally different from thebehavior of the max-min evader. If we
relax the budget constraint|R| = B to |R| ≤ B, the objective will be nondecreasing in the Greedy
algorithm.

Other realizations of 10×10 grid networks produce similar results and are not shown here. In
addition to this example we have explored the performance ofthe algorithms on other networks
including real-world of transportation networks, such as the Washington DC transportation transit
time network and the Rome city road network [14]. The computation cost of the Greedy algorithm
becomes prohibitive in these and other urban, national and international transportation systems.
Those networks have 103−107 edges, depending on the spatial resolution. The Greedy algorithm
running time scales asO(|A||N|3) for the least-cost-guided evader model, The Betweenness algo-
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rithm remains feasible even on very large instances becauseits running time scales asO(|A|+
|N| log|N|).

6. Conclusions and outlook
Practical instances of network interdiction must invariably address the uncertainty in the network
structure and evader behavior. Such behavior can be modeledusing the proposed Markov chain
approach, which achieves increased realism while remaining analytically penetrable. To summarize,
the main contribution of this work are:

• a demonstration of the fundamental advantages of stochastic models over least-cost models,
• a stochastic model of the evader motion based on a Markovian guided random walk, and
• a scalable interdiction algorithm based on a specialized betweenness centrality function.

Future research must address both computational and modeling challenges in stochastic network
interdiction. Current algorithms are effective in the casewhere the evader motion is partially pre-
dictable. It is not known whether more specialized heuristics can be more successful in the case of
highly-stochastic adversaries. In the current model the randomness comes only from information
constraints. In some problems computational constraints on the evader also play a role in determin-
ing his motion. Models that account for both kinds of constrains promise further gains in realism
and would expand the range of applications where network interdiction could be used.
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