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Abstract 
 
Spatial search problems abound in the real world, from locating hidden nuclear or chemical 
sources to finding skiers after an avalanche.  We exemplify the formalism and solution for spatial 
searches involving two agents that may or may not choose to share information during a search.  
For certain classes of tasks, sharing information between multiple searchers makes cooperative 
searching advantageous.  In some examples, agents are able to realize synergy by aggregating 
information and moving based on local judgments about maximal information gathering 
expectations.  We also explore one- and two-dimensional simplified situations analytically and 
numerically to provide a framework for analyzing more complex problems.  These general 
considerations provide a guide for designing optimal algorithms for real-world search problems.  

1. Introduction  

In the real world, there are many spatial search problems that involve multiple agents or 
searchers.  Communication between such agents or between agents and a centralized command 
center may be sensitive, costly, or difficult for various reasons.  In this work, we explore spatial 
search problems in this context and examine the classes of search problems for which 
communication and coordination between multiple agents will enable quantitative advantages 
over independent information gathering.  These problems are very general and can be formalized 
and solved in terms of information theory.  The solutions are essential to the development of 
quantitative decision support tools under uncertainty (e.g., in medicine [9]) and for automated 
multi-agent searches for stochastic information [1], such as those involving distributed sensor 
networks [19].  

A search may be thought of as a series of steps by which an agent or agents reduce the 
uncertainty of the location of a target to zero.  This location may be in physical space or in a 
“space of possibilities,” i.e., a set of alternative scenarios.  For example, if you need to find your 
keys in the morning before going to work and there are five rooms in your house, initially you 
know your keys must be in one of these rooms.  After thoroughly searching one room and not 
finding the keys, your uncertainty is reduced; the keys must now be in one of the four remaining 
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rooms, and so on.  If you find the keys in the second room, then the uncertainty of their location 
is immediately zero because you know with complete certainty that they are in your hand.  

Now imagine you have a friend help you search.  The two of you would be searching twice as 
fast since, assuming you and your friend share information, a pair of searchers can eliminate 
rooms at a rate twice as fast as that of a single searcher.  In more complex search problems, the 
target might emit some kind of complicated signal that makes it possible for multiple coordinated 
searchers to dramatically increase efficiency (imagine there are one thousand rooms to search but 
the keys are attached to some kind of radioactive homing beacon or can emit a sound).  In these 
situations, understanding the nature of the clues and sharing information can be extraordinarily 
beneficial.  

A search whereby agents move based expressly on information cues rather than following 
gradients is known as an infotaxis search.  In a 2007 paper, Vergassola et al. explored infotaxis 
in the context of a moth following a pheromone trail through air to find a mate.  The moth was 
performing a spatial search in turbulent air currents that carried the trail [18].  Compared to more 
conventional methods such as chemotaxis (following a chemical gradient [7,14]), infotaxis gives 
an advantage in situations when the signals from the target of the search are uncertain.  This 
might be the case if signals from the target are stochastic, difficult to measure, or highly varying 
in time.  In the case of the moth, the signal was sparse and widely dispersed by the turbulent air 
currents.  When the moth followed the gradient of the strength of the trail directly – chemotaxis – 
it was forced to take a very circuitous route due to the turbulent dispersal of the trail.  However, 
when the moth employed an infotaxis algorithm to move to positions where it might gain the 
most information about the source of the trail, its performance improved significantly.  Since we 
will consider only search problems such as these, in the following we will refer to the target of 
an infotaxis search as the “source.”  The formalism of infotaxis balances the competing goals of 
exploiting the current information available and exploring to gain more information, a familiar 
compromise from other unsupervised learning methods, such as reinforcement learning [17].  
While effective path planning algorithms may be based on the optimization of some objective 
function, these often rely on exploiting some features of the known environment [12] rather than 
a solid foundation based on information theory.  Infotaxis provides a framework for studying 
search problems in general and is therefore broadly applicable.  

In this article, we explore conditions in which cooperation between multiple infotaxis agents is 
advantageous.  We focus on examples in which agents are able to realize synergetic cooperation 
by aggregating information and moving based on a local infotaxis algorithm.  Synergy, and its 
opposite, redundancy, are information theoretic quantities that are defined in terms of relative 
probabilities of the stochastic variables involved [4].  In a recent paper, we showed that 
spatiotemporal correlations are necessary for synergy [11].  When synergy is exploited 
effectively it can lead to an exponential reduction in the search effort, in terms of time, energy, or 
number of steps [16,10,8].  Here we use a simple one-dimensional search example and a more 
realistic two-dimensional generalization to show how correlations lead to synergy.  These simple 
examples provide a framework for analyzing more complex problems.  Since, in general, the 
computational cost is greater for searchers to communicate and perform coordinated movements 
instead of moving based on independent decisions, we will describe situations in which 
coordination is worthwhile.  
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2. Information theory approach to stochastic search  

Effective and robust search methods for locating stochastic sources balance the competing 
strategies of exploration and exploitation [17].  Given a current estimated probability distribution 
for the location of a source, a searcher might either exploit the data already collected by moving 
towards the location that maximizes this likelihood or sharpen the distribution (reduce 
uncertainty further) by moving to gather more diverse data.  The infotaxis search balances these 
two strategies by optimizing the expected information gain over the possible next search moves. 
In the following, we review some basic concepts from information theory and formalize the 
infotaxis algorithm in terms of these quantities.  

2.1 Information, synergy, and redundancy  

To determine whether searchers can be effectively coordinated we define synergy and 
redundancy as information theoretical quantities [6] and use them as a measure of coordination.  
Synergy is found when measuring two or more variables together with respect to another (e.g., 
the source's signal) results in greater information gain than the sum of that from each variable 
separately [5,4].  In search problems, synergy is advantageous because then the coordination of 
two or more searchers is more efficient than the same searchers working independently.  In this 
section we will introduce these concepts in general terms before applying them to a specific 
search problem. 

Consider the stochastic variables  . Each variable  can take on specific states, 
denoted by the corresponding lowercase letter .  For a single variable  the Shannon entropy 
(henceforth “entropy”) is  

 
(1) 

 

where  is the probability that the variable  takes on the value   [6].  The sum is over all 
of the possible states ; since  < 1 always, the entropy is always positive.  The entropy is a 
measure of uncertainty about the state of  , therefore entropy can only decrease or remain 
unchanged as more variables are measured.  The conditional entropy of a variable  given a 
second variable  is  

 
(2)  

  

 

This expression contains a sum over the joint probability distribution of two variables.  Since 
measuring a second variable can only decrease entropy (or leave it unchanged), the conditional 
entropy is bounded above by the entropy of the first variable.  The mutual information between 
two variables, which plays an important role in search strategy, is defined as the change in 
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entropy when a variable is measured:  

  (3)   

This is also the difference between the entropy of one variable and its entropy conditioned on the 
measurement of a second variable.  Mutual information is always positive.  These definitions can 
be directly extended to multiple variables.  Just as entropy may be conditioned on an additional 
measurement, mutual information may be conditioned on the knowledge of other variables.  
These quantities may be used to generate new information theoretic constructs that we will use in 
specific search problems.  For three variables [15] the quantity  

 

 (4) 

measures the degree of “overlap” in the information contained in variables  and  with 
respect to  .  The sign of this quantity is meaningful.  Namely, if  , there is 
overlap, and  and  are said to be redundant with respect to  . If  , 
more information is available when these variables are considered together than when considered 
separately.  In this case  and  are said to be synergetic with respect to  . If 

 ,  and  are independent. 

2.2 Bayesian inference and spatial infotaxis  

We now formulate the general spatial stochastic search problem for  searchers seeking to find a 
stochastic source located in a finite,  -dimensional space.  This is a generalization of the single 
searcher formalism presented in [18]. At any time step, the searchers  ,  , are 
located at position  and observe some number of particles  from the source.  The searchers do 
not get information the trajectories or speed of the particles; they only get information if a 
particle was observed or not.  Therefore simple geometrical methods such as triangulation are 
not possible.  

Consider a random variable , which can assume a number of specific values, denoted by .  
The values of  refer to positions in space that may contain the stochastic source.  Only one 
value of  corresponds to the (yet unknown) location of the source  .  The searchers compute 
and share a probability distribution  for the source location at each time index .  
Initially, the probability for the source  is assumed to be to be uniform.  After each 
measurement  , the searchers update their estimated probability distribution of source 
positions via Bayesian inference [2] and decide what move to make (possibly remaining at the 
same position).  The goal of Bayesian inference is to improve an estimated probability 
distribution , where is a random variable that can assume a set of values denoted by .  
Assuming that  is another random variable (that can assume a set of values denoted by ) 
and that and  are not independent (that is, ), knowledge of the state of can be 
used to improve .  After a measurement reveals , the probability of this measurement 
given the current estimated  is computed.  The probability of this measurement is 

.  Bayesian inference makes it possible to assimilate this information into the current 
estimate of  via a Bayesian update step: , where 
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 is a normalization factor.  This step includes an explicit statement of equivalence because 
each new measurement is included implicitly in .  Therefore the measurement  
improves the estimate of .  The searchers will use this Bayesian inference framework to 
improve their estimate of the probability distribution of source locations  after each 
measurement . 

To decide where to move next, the searchers follow an infotaxis algorithm for multiple searchers. 
First the conditional probability  

 
(5) 

is calculated, where  is a normalization over all possible source locations  as required by 
Bayesian inference.  This is then assimilated via Bayesian update,  

 (6) 

If the searchers do not find the source at their present locations they choose the next local move 
using an infotaxis step to maximize the expected information gain.  The expected information 
gain is computed in the following way; the entropy of the distribution  at time  is 
defined, using Eq. (1), to be 

 
(7) 

For a specific measurement  the entropy before the Bayesian update is  

 
(8) 

We define the difference between the entropy at time  and the entropy at time  after a 
measurement  to be  

 (9) 

For a uniform prior,  for  possible locations of the source in the discrete 
space, the entropy is maximum, .  For each possible joint move  , the 
change in expected entropy  is computed and the move with the minimum (most negative) 

 is executed.  

The expected information gain is found by computing the entropy change for all of the possible 
joint searcher moves  
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(10) 

The first term in Eq. (10) corresponds to one of the searchers finding the source in the next time 
step (the final entropy will be  so  ).  The second term considers the reduction in 
entropy for all possible measurements at the proposed location, weighted by the probability of 
each of those measurements.  The probability of the searchers obtaining the measurement  at 
the location  is given by the trace of the probability  over all possible 
source locations.  

At each step the searchers move jointly to increase the expected information gain as measured by 
the change in entropy of the probability distribution.  Although this algorithm is general in the 
following we consider only the case of two searchers (  and both one- and two-
dimensional spatial domains.  

3. Searching for correlated signals in one dimension  

Sources that emit uncorrelated signals provide no opportunity for coordination because the 
searchers are never synergetic [11].  We instead consider signals with spatial, temporal, or other 
correlations.  The simplest nontrivial example is searching in a one-dimensional domain for a 
source that emits two particles simultaneously in opposite directions.  Two searchers should be 
able to exploit the correlations in the signal; if both searchers simultaneously observe particles, 
they can immediately conclude that the source is located between them.  Therefore we expect 
synergy to be possible for some spatial arrangements of the source and searchers.  

First consider a finite one-dimensional domain with a source  and two searchers  and  at the 
corresponding positions .  The source is assumed to emit two particles 
simultaneously and in opposite directions.  That is, one particle is emitted to the left and one to 
the right of the source.  The two searchers  and  are identical with a fixed cross section such 
that  is the probability of a searcher capturing one of the particles emitted from the 
source.  At each step in the search the number of particle “hits” measured by searchers  and  
are denoted by  and  , respectively.  

To calculate , it is first necessary to compute the probabilities of  for each searcher 
given the position of the source .  We note that since there is no distance dependence in the 
capture probability  , it is sufficient to consider three separate cases depending on the relative 
positions, or ordering, of the source and the searchers, as shown in Figure 1.  For example, if  
is to the left of the source and  is to the right of the source, the order is  .  Note this is 
equivalent to the case  since the searchers are identical.  
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Figure 1: The three unique cases for relative positions of the source and two identical searchers 
on a one-dimensional domain.  Since the probability of detection in this example does not 
depend on distance, we need only consider the spatial arrangement of the source and searchers.  
The cases are labeled  according to the relative spatial ordering for the source  and 
searchers  .  Since the searchers are identical,  and  are interchangeable and there are 
only three unique cases. 
 

 
If a searcher observes a particle, it is assumed to be absorbed so that the other searcher will not 
be able to observe it.  For example, if  is between  and the source (case  or  ), 
then the probability that  observes a particle depends on whether  observed it.  If  observed 
it, then the probability that  observes it must be 0.  If  did not observe it, then the probability 
that  will observe it is  

   (11) 

   (12) 

 

We can use the probability relation  

 (13) 

 

to compute the two-searcher conditional probabilities  

   (14) 

   (15) 

 

The other probability distributions are computed using similar reasoning.  The results are 
summarized in Table 1.  
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Cases     

      

     

     

      

      

     

     

      

      

     

     

      

 

 

 
Table 1:  Conditional probabilities for the six possible arrangements of the source  and 
searchers  shown in Figure 1.  Since the searchers are identical,  and  are 
interchangeable and there are only three unique cases. In cases  and , searcher one is 
between the source and searcher two.  A particle emitted by the source in the direction of the 
searchers will reach searcher one first.  If searcher one detects the particle, searcher two will not 
be able to detect it.  Searcher two will only have a chance of detecting the particle if the particle 
passes through searcher one undetected.  Similarly, in cases  and , searcher two is 
between the source and searcher one.  A particle emitted by the source in the direction of the 
searchers will reach searcher two first.  If searcher two detects the particle, searcher one will not 
be able to detect it.  Searcher one will only have a chance of detecting the particle if the particle 
passes through searcher two undetected.  In cases  and , the source is between the 
searchers and the searchers do not interfere with each other.  Furthermore, since the source emits 
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two particles simultaneously in opposite directions, in only these cases do both searchers have a 
chance of each detecting a particle. 
 
Using Table 1, we can analytically compute the information theoretic quantities we need to 
determine synergy and redundancy.  These are  

 

 (16) 

 

 
(17) 

 

and  

 
 

 (18) 

    
 

  

 
where the probability distributions are calculated as follows:  

  (19) 

  
(20) 

  
(21) 

  
(22) 

Initially we consider a uniform probability distribution (prior) of source locations:  .  

For small capture probability,  , we can expand Eq. (16) as a Taylor series in  to get an 
analytical solution for the critical values  where  . For  , the critical values 
are given by  

 
 

(23) 
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For  ,  is given by Eq. (23) under the transformations  and  . These 
relations give the approximate boundary between the regions of synergy and redundancy. In the 
limit  ,  .  For these formulas we used a uniform source distribution  but 
it is possible to repeat these calculations with a different  .  

For larger values of  when the expansion is no longer valid, the condition  [as in Eq. (16)] 
can be solved numerically.  Figure 2 shows  as a function of the capture probability 
 and searcher  location  with searcher  fixed at .  This figure also shows 

 for a Gaussian probability of the source location , 
where  is a normalization factor.  In both cases,  (indicating redundancy) when the 
searchers are close together and  (indicating synergy) when they are farther apart.  For the 
Gaussian distribution source location, synergy is strongest when  is close to the source because 
the mutual information between  and  is peaked there as well.  
 
 

 
 

Figure 2: Synergetic and redundant regions for two searchers in the one-dimensional correlated 
search problem.  The value of  is shown for different locations  of  with  held 
fixed at  and the capture probability varying from  (no capture) to  (complete 
capture).  Darker regions represent higher synergy (larger negative values of  ) and the white 
areas represent redundancy.  The critical contour line  separates the synergetic and 
redundant regions (a).  When the source is equally likely to be anywhere,  , there is 
only weak synergy (b).  Then, the probability of the source is a Gaussian distribution centered at 

 ,  , the synergy is highest near the source at  since the mutual 
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information is highest there as well.  The dashed line in (a) shows the critical values  computed 
by the approximation in Eq. (23); this approximation is good for  .  
 
Figure 2(a) shows how the capture probability  influences the possible strategies of the 
searchers.  If  is close to  , then the searchers only realize synergy if they are far apart, which 
maximizes the chance of the source being between them.  But if  is is close to 0, then nearly any 
arrangement of searchers is synergetic but only weakly.  Figure 2(b) demonstrates the 
significance of the prior  in the calculation of .  The variance of  is equal 
to  , the size of the domain, making the Gaussian distribution quite broad.  Nonetheless, the fact 
that the prior is weakly peaked at some point in the domain dramatically reduces the area of the 
redundant (  ) region and allows for much greater synergy between the searchers.  Although 
search problems in the real world are rarely one-dimensional, this example illustrates the basic 
calculations for determining synergy.  

4. Searching for correlated signals in two dimensions  

The one-dimensional example provides a tractable starting point for generalization to two-
dimensional problems.  The simplest generalization is the case of two mobile searchers and one 
stationary source in a two-dimensional finite domain.  Imagine a source in which chemical or 
nuclear reactions are occurring and the products of the reactions leave the source with relative 
angular correlations.  Our two-dimensional idealized problem consists of a source that emits  
particles simultaneously at each time step in opposite directions along some emission axis.  At 
each time step, a new emission axis angle is chosen uniformly at random from .  The 
particles move along straight-line trajectories, but the searchers are not able to measure the 
velocities of any detected particles, so geometric methods such as triangulation are not possible.  
 

 
 
 

 
 
Figure 3:  Diagram for the two-dimensional example.  The source position  is fixed in the 
center and the searchers are disks of radius  .  At each time step, the source emits two particles 
in in opposite directions with a random angle.  Each possible emission axis passing through the 
source corresponds to one of six cases for source and searcher configurations as given in Tables 
1 and 2. 
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In the real world, for example, searchers could be autonomous mobile sensors capable of 
detecting radiation or other reaction products from the above example.  Most modern-day 
autonomous robots do not move much faster than a walking pace [13], largely due to the 
difficulties of navigating uncertain terrain safely.  Thus movement is relatively costly 
(backtracking will take a significant amount of time) and the searchers should make decisions to 
refine their trajectories often, using any new available information.  For this problem, this means 
that the searchers can only make small discrete movements between measurements.  

To represent simplified mobile autonomous robots, we cast the searchers as identical disks of 
radius  that move on a regular Cartesian grid.  Unlike the one-dimensional case, these searchers 
have spatial extent; there are two parts to the calculation of particle detection.  First, if a particle 
travels along a straight line trajectory that passes through a searcher, the capture probability is 

 .  As in the one-dimensional example, if a particle is observed by a searcher, it is 
absorbed so it cannot be observed by the other searcher.  Second, we must consider the 
probability that the particle's trajectory will pass through the searcher.  This is a function of the 
searcher radius  and the distance to the source.  The variables  ,  , and  for the positions of 
the source and searchers each have two components, e.g.  , since they represent 
positions on a two-dimensional grid.  

As in the one-dimensional example, there are different cases for the probabilities which depend 
on the relative position of the two searchers to the source.  For all possible straight line emission 
axes passing through the source, some lines may pass through no searchers (case  ), only 
searcher  (case  ), or only searcher  (case  ).  If a line passes through both searchers, 
the source is between the searchers (case  as in the one-dimensional example), or one of 
the other searchers is in front of the other (cases  and  as in the one-dimensional 
example).  These cases are illustrated in Figure 3.  For any source location, there will be a range 
of angles  for each case  .  The probabilities for the cases that do not appear in the one-
dimensional example (see Table 1) are detailed in Table 2.  Quantities such as  are 
a superposition of the values for the different cases, weighted by the proportion of angles 
corresponding to each case  

 

 
(24) 

 

and similarly for other quantities such as  , etc.  In principle, while it is possible to find 
the  analytically using geometry, in practice, it is much more efficient to do this numerically.  

 

 

 



UNCLASSIFIED 
 

UNCLASSIFIED 
 

 
 

 

Case     

      

     

      

      

      

     

      

      

      

     

      

      
 

 

 
 
Table 2:  Conditional probabilities for cases unique to the two dimensional example in Figure 3. 
The cases  ,  , and  (not shown), are identical to those of the one dimensional 
problem given in Table 1.  As shown in Figure 3, the case  corresponds to the range of angles 
for which it is impossible for either searcher to detect a particle.  Case  corresponds to the 
range of angles for which only searcher one has a chance of detecting a particle, and case  
corresponds to the range of angles for which only searcher two has a chance of detecting a 
particle. 
 
Note that the different cases in the one-dimensional example were taken into account implicitly 
during integration as in Eq. (22).  In the two-dimensional example, they are taken into account 
when the effective probability distributions are computed as a superposition of the probabilities 
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of the individual cases.  This is because there is more than one case for each source location 
relative to the searchers.  

We illustrate the two-dimensional searcher problem with a setup of searcher and source locations 
that illustrate the synergetic and redundant positions.  We use the Gaussian prior for the initial 
guess  

 
(25) 

where  is the normalization and  determines the overall shape of the distribution.  The vector 
 is the most probable position of the source.  The quantity  [see Eq. (4)] 

determines whether the searchers are positioned synergetically relative to the source.  When the 
searchers are performing an infotaxis search, realizing synergetic relative positions will in 
principle lead to the fastest reduction in uncertainty.  

In Figure 4 we plot  as a function of the position of one searcher  with the position of the 
second searcher  held fixed.  We find for this example that only synergy (  ) is possible. 
The light areas in Figure 4 correspond to weak synergy and the dark areas to stronger synergy.  
As in the one-dimensional example, synergy is strongest for large  and when searcher  is near 
the source and not behind searcher  .  The small cross section [  in Figure 4(a)] allows 
only for weak synergy, whereas a larger cross section [  in Figure 4(b)] gives much 
stronger synergy for certain relative positions.  The strongest synergy comes from a large cross 
section paired with optimal positioning.  The maximum synergy is realized when searcher  is 
close to the peak of  and especially when the peak of  is between the searchers.  Note that 
unfavorable positions (such as  , behind searcher  ) provide minimal synergy 
regardless of the value of  .  
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Figure 4:  Synergy for two searchers for two-dimensional correlated signals.  The value of 
 is shown as a function of the position  of searcher  for two different values of 

the capture probability  : (a)  ; (b)  .  The position of searcher  is fixed 
 .  The most probable source location (the peak of the Gaussian distribution for the 

initial source location) is at  .  Darker blue corresponds to stronger synergy (  ). 
Synergy is strongest for large  and when searcher  is near the source and not behind searcher 

 relative to the source. 
 
For real-world problems, larger cross sections yield more information and therefore stronger 
synergy is possible.  However for some applications, the cross section of a sensor on a searcher 
may be limited by practical considerations such as weight or power consumption.  This example 
shows that synergy is still possible for small  .  Furthermore, this example emphasizes the 
importance of the probability estimate of source locations .  The infotaxis algorithm is 
designed such that the searchers will explore, gathering new information, if their arrangement is 
not sufficiently synergetic to warrant exploitation.  This allows the searchers to succeed even 
with no starting information, but they may not realize strong synergy until the estimate of  
is sufficiently refined.  

5. Conclusion  

In this work we studied search algorithms for autonomous agents looking for the spatial location 
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of a stochastic source.  In spatial search problems, since the exploitation of synergy requires 
spatial or temporal correlations, we considered problems in which a source emits two particles 
simultaneously in opposite directions.  This is a simplification of physical problems in which 
there is a reaction and the products travel in directions that have angular correlations.  We 
showed that both synergy and redundancy are possible for one-dimensional search problems but 
not for two-dimensional searches, where only synergy is possible.  Since even unfavorable 
arrangements of searchers are synergetic, in two-dimensional search problems like these 
coordination is always advantageous. 

Simple examples such as these that can be studied analytically provide insight into real-world 
problems.  In real-world problems, there will necessarily be additional considerations.  It may 
not always be possible to write a closed-form equation for the nature of the correlations in the 
signal from the source.  It may be necessary to directly measure any correlations and use this to 
estimate capture probabilities.  Furthermore, various probabilities may not be stationary in time 
or the signals from the source may get progressively weaker.  For example, signals from a radio 
transmitter may decrease in strength over time as its batteries are slowly exhausted.  An 
additional consideration is that in the real-world, communication between agents may only be 
possible at certain times and may not be instantaneous as in our simple examples.  These general 
considerations are crucial for the exploitation of multi-agent infotaxis in terms of the design of 
optimal collective algorithms in particular applications.  The next steps for making this approach 
applicable to a broader class of problems, including those not limited to spatial searches[3], are 
to generalize the results to more than two searchers and to explore how synergy may be best 
leveraged to give increases in search speed and efficiency.  
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