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The Structure of Geographical
Threshold Graphs
Milan Bradonjić, Aric Hagberg, and Allon G. Percus

Abstract. We analyze the structure of random graphs generated by the geographical
threshold model. The model is a generalization of random geometric graphs. Nodes are
distributed in space, and edges are assigned according to a threshold function involving
the distance between nodes as well as randomly chosen node weights. We show how
the degree distribution, percolation and connectivity transitions, clustering coefficient,
and diameter relate to the threshold value and weight distribution. We give bounds
on the threshold value guaranteeing the presence or absence of a giant component,
connectivity and disconnectivity of the graph, and small diameter. Finally, we consider
the clustering coefficient for nodes with a given degree l, finding that its scaling is very
close to 1/l when the node weights are exponentially distributed.

1. Introduction

Large networks such as the Internet, World Wide Web, phone call graphs, infec-
tious disease contacts, and financial transactions have provided new challenges
for modeling and analysis [Bonato 05]. For example, web graphs may have
billions of nodes and edges, which implies that the analysis on these graphs,
i.e., processing and extracting information on these large sets of data, is “hard”
[Abello et al. 02]. Extensive theoretical and experimental research has been done
in web-graph modeling. Early measurements suggested that the Internet exhibits
a power-law degree distribution [Faloutsos et al. 99] and that the web graph also
follows a power-law distribution in in- and out-degree of links [Kleinberg et al.
99]. Modeling approaches using random graphs have attempted to capture both
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the structure and dynamics of the web graph [Kumar et al. 00, Barabási and
Albert 99, Aiello et al. 00, Bollobás et al. 01, Cooper and Frieze 01].

The study of random graphs began with the introduction of the uniform ran-
dom graph model [Erdős and Rényi 59, Erdős and Rényi 60]. Since then, many
other models have been proposed to better capture the structure seen in real-
world networks [Bollobás 01, Durrett 06]. Some examples are random graph
models with a given or expected degree sequence [Molloy and Reed 95, Chung
and Lu 06], threshold graphs [Mahadev and Peled 95, Hagberg et al. 06] with
edges created according to a function of node weights, and graphs with an un-
derlying geometric structure, such as random geometric graphs [Penrose 03]. In
this paper we study another recent addition to this collection of models: geo-
graphical threshold graphs (GTGs), a static model for networks that includes
both geometric information and node weight information.

GTGs combine the geometric structure of random geometric graphs with node
properties similar to threshold graphs. The properties of this graph ensemble
have only recently begun to be studied [Masuda et al. 05, Bradonjić et al. 07,
Bradonjić and Kong 07]. One motivation for analyzing this model is that many
real networks need to be studied with a stochastic model that is “richer” than
random geometric graphs. The GTG model has been applied, for instance, in
the study of wireless ad hoc networks in systems in which the wireless nodes have
different communication ranges or battery power [Bradonjić and Kong 07]. In
that case, the weights represent available power or bandwidth of a wireless node.
By varying the weights, properties such as the diameter or degree distribution can
be tuned. Other possible applications of GTGs that are yet to be explored are
epidemic modeling, where the weights could represent susceptibility or infectivity
of an individual; and social networks, where the weights might be related to
affinity or attractiveness.

2. Geographical Threshold Graph Model

The GTG model is constructed from a set of n nodes placed independently
and uniformly at random in a volume in R

d. A nonnegative weight wi, taken
randomly and independently from a probability distribution function f(w) :
R

+
0 → R

+
0 , is assigned to each node vi for i ∈ [n]. Let F (x) =

∫ x
0 f(w) dw be

the cumulative density function. For two nodes vi and vj at distance r, the edge
(i, j) exists if and only if the following connectivity relation is satisfied:

G(wi, wj)h(r) ≥ θn, (2.1)
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where θn is a given threshold parameter that depends on the size of the network.
The function h(r) specifies the connection probability as a function of distance
and is assumed to be decreasing in r. In the following we take h(r) = r−β ,
for some positive β, which is typical, for example, of the path-loss model in
wireless networks [Bradonjić and Kong 07]. The interaction strength between
nodes G(wi, wj) is typically taken to be symmetric (to produce an undirected
graph) and either multiplicatively or additively separable, i.e., in the form of
G(wi, wj) = g(wi)g(wj) or G(wi, wj) = g(wi) + g(wj).

Some basic results have already been established. For the case of uniformly
distributed nodes over a unit space it has been shown [Masuda et al. 05, Bradonjić
and Kong 07] that the expected degree of a node with weight w is

E[k(w)] =
nπd/2

Γ(d/2 + 1)

∫
w′
f(w′)

(
h−1(θn/G(w,w′))

)d
dw′,

where h−1 is the inverse of h. The degree distribution has been studied for
specific weight-distribution functions f(w) [Masuda et al. 05]. In both the mul-
tiplicative and additive cases of G(w,w′), questions of diameter, connectivity,
and topology control have been addressed [Bradonjić and Kong 07].

Here we restrict ourselves to the case of g(w) = w, β = 2, and nodes distributed
uniformly over a two-dimensional space. For analytical simplicity we take the
space to be a unit torus, and use the additive model for the connectivity relation

wi + wj
r2

≥ θn. (2.2)

Certain of our techniques may be generalized to other cases in a straightforward
manner.

Finally, we impose the following relatively weak conditions on the weight distri-
bution f(w): (1) a finite mean μ = E[w], (2) a finite variance σ2 = E[w2]−E[w]2,
and (3) nonvanishing support everywhere on w ∈ (0,∞).

Some examples of GTG instances with exponential weight distribution f(w) =
e−w are shown in Figure 1.

The paper is organized as follows. We first state a basic property concerning
the degree distribution of GTGs. In Section 4, Theorems 4.2 and 4.3 provide
bounds on θn for the absence and the existence of a giant component. Similarly,
in Section 5, Theorems 5.2 and 5.3 provide bounds on θn for the graph being
disconnected and being connected. Section 6 gives upper bounds on the diameter,
along with simulation results. Finally, in Section 7 we calculate the clustering
coefficient, and discuss certain of its properties.
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(a)

(b)

(c)

Figure 1. Instances of GTG with exponential weight distribution for n = 300 at
decreasing threshold parameter values (increasing mean degree): (a) θn/n = 2π,
well below the percolation transition; (b) θn/n = 1, above the percolation but
below the connectivity transition; (c) θn/n = 1/2e, well above connectivity.
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Bradonjić et al.: The Structure of Geographical Threshold Graphs 117

3. Degree Distribution

We start by stating the degree distribution in our GTG model. Let the position
vector of the nodes be x and the weight vector be w. Without loss of generality,
let us consider node v1. It is straightforward to show that the probability of v1
having degree k, given weights w, is

Pr[d1 = k|w] =
(
n− 1
k

) k+1∏
i=2

area(B(xi, ri1))
n∏

j=k+2

(1 − area(B(xj , rj1))),

where area(B(xi, ri1)) is the area of the ball with center xi and radius ri1, and
due to (2.2), the radii are given by

ri1 =
√
w1 + wi
θn

for i = 2, . . . , n. After marginalization, it follows that

Pr[d1 = k|w1]

=
( n∏
i=2

∫
wi

f(wi)dwi
)

Pr[d1 = k|w]

=
(
n− 1
k

)(∫
w

f(w)
π(w1 + w)

θn
dw
)k(

1 −
∫
w

f(w)
π(w1 + w)

θn
dw
)n−1−k

=
(
n− 1
k

)(π(w1 + μ)
θn

)k(
1 − π(w1 + μ)

θn

)n−1−k
. (3.1)

That is, the degree distribution di of a node vi with weightwi follows the binomial
distribution

di(·|wi) ∼ Bin(n− 1, pi), (3.2)

where
pi =

π

θn
(wi + μ). (3.3)

4. Giant Component

Definition 4.1. (Giant Component.) The giant component is a connected component of
size Θ(n).

In this section we analyze the conditions for the existence of the giant compo-
nent, giving bounds on the threshold parameter value θn where it first appears.
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For θn = gn, we specify positive constants g′ > g′′ and prove that whp (with
high probability, i.e., with probability 1 − o(1)), if g > g′, the giant component
does not exist, whereas if g < g′′, the giant component exists.

We do not prove that there is a zero–one law governing the emergence of the
giant component. However, given that the probability of a giant component is
zero above g′ and one below g′′, it would be rather surprising if the transition
were not a sharp one.

4.1. Absence of Giant Component

Theorem 4.2. Let θn = gn for g > g′, where g′ = 2πμ. Then whp there is no giant
component in GTG.

Proof. We start by introducing a slightly different GTG model from our usual
one. Consider the space of possible node positions and weights, S = {(x, y, w) :
x, y ∈ [0, 1], w ≥ 0}. In the model we have already defined, we place n nodes in
S, leading to a binomial degree distribution: call this the binomial GTG. Let us
now instead place nodes in S according to a spatial Poisson process with rate
nf(w), so that the expected number of nodes is n: call this the Poisson GTG.
We will prove that the Poisson GTG does not have a giant component. It is
straightforward to see that if the binomial GTG had a giant component with
nonvanishing probability, the analogous Poisson GTG would have one as well.
Thus, the binomial GTG cannot have a giant component either.

The proof’s approach is similar to one given in [Alon and Spencer 00]. Divide
the nodes into three classes: alive, dead, and neutral. Denote the number of
alive nodes by Yi. Now apply the following algorithm. At time t = 0, designate
one node (picked uniformly at random) as being alive and all others as neutral.
At each subsequent time step t, pick a node vt uniformly at random from among
those that are alive, and then consider all neutral nodes connected to vt. Denote
the number of these nodes by Zt. Change these nodes from neutral to alive,
and change vt itself from alive to dead. The random variables Yi, Zi satisfy the
following recurrence relation: Y0 = 1 and Yt = Yt−1 + Zt − 1, for t ≥ 1. The
number of alive nodes satisfies

Yt − 1 =
t∑
i=1

Zi − t.

Since neutral nodes are by definition those that have not yet been explored
by the algorithm, the Zi are independent random variables. We formalize this
argument as follows. For a node vi = (xi, yi, wi), define Si ⊆ S as the subspace
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of all positions and weights of nodes that can be connected to vi, namely Si =
{(x, y, w) : x, y ∈ [0, 1], w ≥ 0, (x − xi)2 + (y − yi)2 ≤ (w + wi)/θn}. At time
t = 0, any node within S0 is a neutral node connected to v0. But at a subsequent
time step t, nodes within any Si for i < t have already been designated alive, so
only those in

Bt = St \
t−1⋃
i=0

Si

can be neutral nodes connected to vt. Thus, the nodes figuring within Zt and
Zt′ , for any two different time steps t and t′, are drawn from disjoint subspaces
Bt and Bt′ .

The Zi are simply restrictions of the Poisson process to the Bi. Due to the
memoryless nature of the Poisson process, they are independent Poisson random
variables. Given that Bi ⊆ Si and the expected population of Si is npi with pi
as defined in (3.3), Zi satisfies the stochastic bound

Pr[Zi ≥ k] ≤ Pr[Po(npi) ≥ k].

Now consider nodes that are alive, and let T be the largest t such that Yt > 0.
Then T is the size of the component containing v0, and the giant component
exists if and only if T = Θ(n) with some nonvanishing probability. The variable
T satisfies

Pr[T ≥ t] = Pr[Yt > 0] = Pr[Yt ≥ 1] = Pr
[ t∑
i=1

Zi ≥ t
]
≤ Pr

[ t∑
i=1

Po(npi) ≥ t
]
.

We take the threshold to be θn = gn. Since the sum of independent Poisson
random variables is itself Poisson distributed, we need to prove that

Pr
[
Po
(
n

t∑
i=1

pi

)
≥ t
]
→ 0

for t = Θ(n), for some g > 0. For any constant ε ∈ (0, 1), the following inequality
holds:

Pr
[
Po
(
n

t∑
i=1

pi

)
≥ t
]
≤ Pr

[
Po
(
n

t∑
i=1

pi

)
≥ t
∣∣∣ t∑
i=1

wi ∈ (1 ± ε)tμ
]

+ Pr
[ t∑
i=1

wi /∈ (1 ± ε)tμ
]
. (4.1)

We will bound the first term on the right-hand side using the concentration of
Poisson random variables [Penrose 03]. To maximize the conditional probability,
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set
∑
wi = (1 + ε)tμ, and then let λ = n

∑t
i=1 pi = (2 + ε)atμ, where a =

nπ/θn = π/g. Now, given any constant γ ∈ (0, 1), for t → ∞, i.e., λ → +∞, it
follows that

Pr[Po(λ) /∈ (1 ± γ)λ] ≤ e−λH(1−γ) + e−λH(1+γ) → 0,

where the function H is given by H(x) = 1 − x + x log x, for x > 0. It is
now sufficient to choose g large enough that t > (1 + γ)λ, which occurs when
g > (2 + ε)(1 + γ)πμ. It follows that for any g > 2πμ, ε and γ can be set so that
the first term on the right-hand side in (4.1) goes to zero.

Now consider the second term on the right-hand side. By the central limit
theorem, (

∑
wi− tμ)/(

√
tσ) tends to the normal distribution N(0, 1) as t→ ∞,

so

Pr
[ t∑
i=1

wi /∈ (1 ± ε)tμ
]

= Pr
[∑wi − tμ√

tσ
/∈ (−ε, ε)√tμ

σ

]
→ 0

for any constant ε.
Thus, for g > 2πμ, the probability that T equals Θ(n) goes to zero, and so

there is no giant component.

4.2. Existence of Giant Component

Theorem 4.3. Let θn = gn for g < g′′ = supα∈(0,1) αF
−1(1 − α)/λc, where πλc ≈

4.52 is the mean degree at which the giant component first appears in random
geometric graphs (RGG) [Penrose 03]. Then whp the giant component exists in
GTG.

Proof. For any constant α ∈ (0, 1), we prove that whp there are αn “high-
weighted” nodes, all with weights greater than or equal to some sn; we state
sn later. Let Xi be the indicator of the event wi ≥ sn. Then Pr[Xi = 1] =
1−F (sn) =: q. Let X =

∑n
i=1Xi be the number of high-weighted nodes. Using

the Chernoff bound Pr[X ≤ (1 − δ)E[X ]] ≤ exp(−E[X ]δ2/2), with δ = 1 − α/q,
we obtain

Pr[X ≤ αn] = Pr[X ≤ (1 − δ)E[X ]] ≤ exp
(− n(q − α)2/(2q)

)
= n−γ

for some constant γ > 1 satisfying (q − α)2 = 2qγ logn/n.
Solving this quadratic equation in q gives q = α + Θ(logn/n), so F (sn) =

1− q = 1− α−Θ(logn/n). For any ε > 0 and n sufficiently large, the following
inequality is satisfied:

F−1(1 − α) ≥ sn ≥ F−1(1 − α− ε).
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Thus, let sn be a sequence such that its limit satisfies

sn → F−1(1 − α) = Θ(1).

Now we consider the set of αn high-weighted nodes. For each such node vi with
weight wi, define its characteristic radius to be

r2t (wi) =
wi
θn
.

Then it follows that any other high-weighted node vj within this radius is con-
nected to vi, since the connectivity relation is satisfied:

wi + wj
r2

≥ wi
r2t

= θn.

Let θn = gn, where g < αF−1(1 − α)/λc. For the radius rt, whp it follows that

r2t (wi) =
wi
θn

≥ sn
θn

>
λc
αn

. (4.2)

Let us therefore consider small circles with a fixed radius r0 such that
√
sn/θn >

r0 >
√
λc/(αn) around each of these αn nodes. A subgraph of this must be an

RGG with mean degree greater than πλc, which whp contains a giant component.
Since its size is Θ(αn) = Θ(n), it is a giant component of the GTG too. We
may optimize the bound by taking the supremum of g over α ∈ (0, 1), and the
theorem follows.

4.3. Comparison of Upper and Lower Bounds

We again stress that we have not proven a zero–one law for the emergence of the
giant component. If a sharp transition does indeed exist, then g′ and g′′ provide
bounds on its location. Here we consider the size of the gap between the two
bounds.

Claim 4.4. For any weight distribution f(w), g′/g′′ ≥ 2πλc ≈ 9.04.

Proof. First consider g′ = 2πμ. Using the telescope formula, μ satisfies

μ =
∫ ∞

0

(1 − F (y))dy.

Now consider g′′ = supα∈(0,1) αF
−1(1 − α)/λc. We have F : [0,+∞) → [0, 1).

Since F is a bijection, the inverse F−1 : [0, 1] → [0,+∞) exists. Let x =
F−1(1 − α), and consequently α = 1 − F (x). Then

sup
α∈(0,1)

αF−1(1 − α) = sup
x∈(0,∞)

x(1 − F (x)).
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Define the function

h(x) =
∫ x

0

(1 − F (y))dy − x(1 − F (x)).

Since h′(x) = xf(x) ≥ 0 and h(0) = 0, we know that h(x) ≥ 0 for every x ≥ 0.
Let x0 be the value at which x(1 − F (x)) has its supremum. Then,

μ− sup
α∈(0,1)

αF−1(1 − α) =
∫ ∞

0

(1 − F (y))dy − x0(1 − F (x0)) ≥ h(x0) ≥ 0,

from which the claim follows.

Remark 4.5. For the exponential distribution f(w) = γ exp(−γw), we have g′ =
2π/γ.

Remark 4.6. If αF−1(1 − α) has an extremum for α ∈ (0, 1), this occurs at

α = F−1(1 − α)f(F−1(1 − α)).

For example, for the exponential distribution the maximum is at α = 1/e, giving
a bound of g′′ = 1/eγλc.

5. Connectivity

Definition 5.1. (Connectivity.) The graph on n vertices is connected if the largest
component has size n.

In this section we analyze conditions for connectivity, giving bounds on the
threshold parameter θn at which the entire graph first becomes connected. Sim-
ilarly to our approach in the case of the giant component, for θn = κn/ logn, we
specify positive constants κ′ > κ′′ and prove that whp, if κ > κ′, the graph is
disconnected, whereas if κ < κ′′, the graph is connected.

As in the case of the emergence of the giant component, it seems likely but has
not been proven that there is a sharp phase transition at which GTGs become
connected.

5.1. Disconnected Graph

In this subsection we prove the conditions under which a graph is disconnected.

Theorem 5.2. Let θn = κn/ logn for κ > κ′, where κ > πμ. Then the GTG is
disconnected whp.
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Proof. For a node vi, let Yi be the indicator of the event that vi is isolated. We
will consider the sum

Y =
n∑
i=1

Yi

and show that Pr[Y = 0] → 0. It will then follow that whp there is at least one
isolated node, and so the graph is disconnected.

From the binomial degree distribution in (3.1), the probability that vi is iso-
lated, conditional on wi, is

Pr[Yi = 1|wi] =
(
1 − wi + μ

θn
π
)n−1

.

Now define

p ≡ E[Yi] = Pr[Yi = 1] =
∫
f(wi)

(
1 − wi + μ

θn
π
)n−1

dwi.

Applying the second moment method yields

Pr[Y = 0] ≤ Var[Y ]
E[Y ]2

=

∑
i Var[Yi] +

∑
i�=j Cov[Yi, Yj ]

(np)2
.

The variance and covariance are given by

Var[Yi] = E[Y 2
i ] − E[Yi]2 = p− p2,

Cov[Yi, Yj ] = E[Yi, Yj ] − E[Yi]E[Yj ] = Pr[Yi = 1, Yj = 1] − p2,

so

Pr[Y = 0] ≤ n(p− p2) + n(n− 1)(Pr[Yi = 1, Yj = 1] − p2)
(np)2

<
1
np

+
Pr[Yi = 1, Yj = 1]

p2
− 1.

Let us first consider the 1/(np) term. Let θn = κ n
logn , where κ is a constant.

We claim that if κ > πμ, then 1/(np) → 0. To see this, let ζ be any positive
constant that satisfies κ > π(μ+ ζ). We have

p =
∫
f(w)

(
1 − w + μ

θn
π
)n−1

dw

≥
∫ ζ

0

f(w)
(
1 − w + μ

θn
π
)n−1

dw

≥ F (ζ)
(
1 − μ+ ζ

θn
π
)n−1
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= F (ζ)
(
1 − μ+ ζ

κn
π logn

)n−1

= F (ζ)n−(μ+ζ)π/κ(1 + o(1)).

Therefore, if κ > π(μ + ζ), then pn ≥ F (ζ)ω(n). Since f(w) has nonvanishing
support, F (ζ) > 0, and so 1/(np) → 0 for n→ ∞.

Next, we will show that Pr[Yi = 1, Yj = 1]/p2 = o(1). Consider the joint prob-
ability conditional on a set of weights w. Denoting the neighborhood relation
by vi ∼ vj , we have

Pr[Yi = 1, Yj = 1|w] = Pr
[
vi � vj ,

⋂
k �=i,j

vi � vk, vj � vk|w
]

= Pr[vi � vj |wi, wj ]Pr
[ ⋂
k �=i,j

vi � vk, vj � vk|vi � vj ,w
]

= Pr[vi � vj |wi, wj ]
∏
k �=i,j

Pr[vi � vk, vj � vk|vi � vj ,w].

We now use the easily verified property that given events Q, R, and S that
depend on w,

Pr[Rc, Sc|Qc,w] = 1 − Pr[R|w] − Pr[S|w] + (1 − Pr[Q|R,S,w])
Pr[R,S|w]
Pr[Qc|w]

.

Let a = Pr[vi ∼ vj |wi, wj ], b = Pr[vi ∼ vk|wi, wk], c = Pr[vj ∼ vk|wj , wk], and
define the clustering coefficient

C = Pr[vi ∼ vj |vi ∼ vk, vj ∼ vk, wi, wj , wk].

Then

Pr[Yi = 1, Yj = 1|w] = (1 − a)
∏
k �=i,j

[
1 − b− c+ (1 − C)

bc

1 − a

]
. (5.1)

Note that a = (wi + wj)π/θn, and similarly for b and c.
In Section 7.1, we show (Lemma 7.1) that ifwi, wj , wk ≤ ŵ = (1−3

√
3/4π)θn/2π,

then C ≥ a. Thus, under those conditions,

1 − b− c+ (1 − C)
bc

1 − a
≤ 1 − b− c+ bc = (1 − b)(1 − c).

Now average (5.1) over all weights. It follows from the finite variance of f(w)
that for any constant M , we have F (Mθn) = 1 − o(1/n), and so
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Pr[Yi = 1, Yj = 1]

=
∫
f(wi)dwi

∫
f(wj)dwj(1 − a)

×
(∫

f(wk)dwk
[
1 − b− c+ (1 − C)

bc

1 − a

])n−2

=
∫ ŵ

0

f(wi)dwi
∫ ŵ

0

f(wj)dwj(1 − a)

×
(∫ ŵ

0

f(wk)dwk
[
1 − b− c+ (1 − C)

bc

1 − a

])n−2

(1 + o(1))

≤
∫ ŵ

0

f(wi)dwi
∫ ŵ

0

f(wj)dwj(1 − a)
( ∫ ŵ

0

f(wk)dwk(1 − b)(1 − c)
)n−2

× (1 + o(1))

=
∫ ŵ

0

f(wi)dwi
∫ ŵ

0

f(wj)dwj

×
{(

1 − π

θn
(wi + wj)

)

×
(∫ ŵ

0

f(wk)dwk(1 − π

θn
(wi + wk))(1 − π

θn
(wj + wk))

)n−2}

=
∫ ŵ

0

f(wi)dwi
∫ ŵ

0

f(wj)dwj

×
{
(1 − π

θn
(wi + wj))

×
(
1 − π

θn
(wi + wj + 2μ) +

π2

θ2n
(wiwj + μ(wi + wj) + μ2 + σ2)

)n−2}
.

Now consider p2. Using the fact that μ, σ, and 1
2 − (ŵ+μ)π/θn are all Θ(1), we

have

p2 =
∫
f(wi)dwi

∫
f(wj)dwj

(
1 − π

θn
(wi + μ)

)n−1 (
1 − π

θn
(wj + μ)

)n−1

≥
∫ ŵ

0

f(wi)dwi
∫ ŵ

0

f(wj)dwj

(
1 − π

θn
(wi + μ)

)n−1(
1 − π

θn
(wj + μ)

)n−1

=
∫ ŵ

0

f(wi)dwi
∫ ŵ

0

f(wj)dwj

×
(
1 − π

θn
(wi + wj + 2μ) +

π2

θ2n
(wiwj + μ(wi + wj) + μ2)

)n−1
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=
∫ ŵ

0

f(wi)dwi
∫ ŵ

0

f(wj)dwj

×
(
1 − π

θn
(wi + wj + 2μ) +

π2

θ2n
(wiwj + μ(wi + wj) + μ2 + σ2)

)n−1

(1 − o(1))

>

∫ ŵ

0

f(wi)dwi
∫ ŵ

0

f(wj)dwj
(
1 − π

θn
(wi + wj + 2μ

)

×
(
1 − π

θn
(wi + wj + 2μ) +

π2

θ2n
(wiwj + μ(wi + wj) + μ2 + σ2)

)n−2

(1 − o(1))

=
∫ ŵ

0

f(wi)dwi
∫ ŵ

0

f(wj)dwj
(
1 − π

θn
(wi + wj)

)

×
(
1 − π

θn
(wi + wj + 2μ) +

π2

θ2n
(wiwj + μ(wi + wj) + μ2 + σ2)

)n−2

(1 − o(1)).

Finally, this gives the desired ratio

Pr[Yi = 1, Yj = 1]
p2

< 1 + o(1).

By the second moment method it then follows that Pr[Y = 0] < o(1).

5.2. Connected Graphs

Theorem 5.3. Let θn = κn/ logn for κ < supα∈(0,1) αF
−1(1 − α)/4. Then the GTG

is connected whp.

Proof. The proof is divided into two parts. In the first part, we prove that a
constant fraction of nodes αn are connected. In the second part we prove that
the rest of the (1 − α)n nodes are connected to the first set of αn nodes.

First part: Invoking the proof of the appearance of the giant component, there
are αn nodes all with weights greater than or equal to sn → F−1(1−α) = Θ(1).

Let θn = κn/ logn, where κ < αF−1(1 − α)π. Analogously to rt, define the
connectivity radius rc by

r2c (wi) =
wi
θn

≥ sn
θn

>
log n
απn

.

Similarly to Theorem 4.3, let us consider small circles around each of these αn
nodes, and consider these nodes as an RGG. It is known that rn =

√
logn/(πn)

is the connectivity threshold in RGG [Gupta and Kumar 98]. The connectivity
of RGG implies the connectivity of these αn nodes in our GTG.

Second part: Color the αn high-weighted nodes blue, and the remaining
(1 − α)n nodes red. Now let us tile our space into n/(c0 logn) squares of size
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c0 logn/n. We state c0 later. Consider any square Si, and let Bi be the number
of blue nodes in Si. In expectation there are E[Bi] = αc0 logn blue nodes in
each square. From the Chernoff bound it follows that

Pr[Bi ≥ (1 − δ)αc0 log n] ≥ 1 − n−αc0δ2/2. (5.2)

Let us consider one red node r. The node r belongs to some square Si. Let Mr

be the event that the red node r is connected to some blue node b ∈ Si. Let the
weights of r, b be wr, wb, respectively. The probability of the complement of Mr,
conditioned on there being at least one blue node in Si, is given by

Pr[M c
r |Bi ≥ 1] = Pr[wr + wb ≤ r2θn] ≤ Pr

[
wr + wb ≤ 2c0

logn
n

κ
n

logn

]
= Pr[wr + wb ≤ 2c0κ].

As long as F−1(1 − α) > 2c0κ, then wb > 2c0κ, and hence Pr[M c
r |Bi ≥ 1] = 0.

For large enough n it must hold that (1− δ)αc0 log n > 1, and so from (5.2), we
have

Pr[M c
r ] ≤ Pr[M c

r |Bi ≥ (1 − δ)αc0 logn] + Pr[Bi < (1 − δ)αc0 logn]

≤ 0 + n−αc0δ2/2.

If αc0δ2/2 ≥ 1 + ε for some ε > 0, then by the union bound,

Pr[
⋃
r

M c
r ] ≤

∑
r

Pr[M c
r ] ≤ (1 − α)nn−(1+ε) = (1 − α)n−ε.

Finally, the probability that all red nodes are connected to the set of blue nodes
is given by the following relation:

Pr[
⋂
r

Mr] = 1 − Pr[
⋃
r

M c
r ] ≥ 1 − (1 − α)n−ε → 1. (5.3)

The requirements we have imposed on constants so far are κ < αF−1(1 − α)π,
κ < F−1(1−α)/(2c0), and αc0 ≥ 2(1 + ε)/δ2. These conditions combine to give

κ < αF−1(1 − α)min
(
π,

δ2

4(1 + ε)

)
.

Since α ∈ (0, 1), δ ∈ (0, 1), and ε > 0 are arbitrary, we obtain

κ < sup
α∈(0,1)

αF−1 1 − α

4
.
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Figure 2. Illustration of our diameter proof technique: a sequence of adjacent
squares of size x× x links an arbitrary pair of nodes u and v in a unit-area disk.

6. Diameter

In this section we analyze the diameter of GTG, and provide an upper bound on
it. In the design of large networks, such as the Internet and wireless networks,
it is desirable to achieve low latency in the graph (i.e., the hop count between
any pair of nodes in the network is small). In other words, a graph with a small
diameter is desired.

We give conditions on the threshold function θn such that the graph has a
desired diameter in general. Furthermore, we derive conditions on θn, in terms of
the cumulative distribution function on weights F (w), such that diam belongs to
the specific classes diam = O(1), diam = O(logq n), and diam = O(

√
n/ logn).

These correspond respectively to ultralow-, low-, and high-latency networks.
For these three classes, we give the exact expressions on θn in the case of the
exponentially distributed weights. Note that all of these classes correspond to
denser graphs than those we have considered so far, i.e., with θn scaling as
o(logn/n) as opposed to the Θ(logn/n) scaling for connectivity.

Let u and v be two arbitrary nodes. Construct a sequence of adjacent squares
S1, S2, . . . , SO(1/x), of size x × x, linking u and v, such that u and v are the
centers of the first and last squares respectively (see Figure 2).1 The geometric
distance between any two nodes is r ≤ Θ(1). Thus, there are O(1/x) squares on
the straight path u− v in total.

1The centers of the squares lie on the straight line u − v.



�

�

“imvol5” — 2009/7/20 — 16:01 — page 129 — #17
�

�

�

�

�

�
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Let Vi be the number of nodes that for i = 1, 2, . . . , O(1/x) lie within the
square Si. We have E[Vi] = nx2. Using the Chernoff bound, the following is
satisfied:

Pr[Vi ≤ (1 − δ)E[Vi]] ≤ e−E[Vi]δ
2/2.

Taking δ = 1/2, we get Pr[Vi ≤ nx2/2] ≤ e−nx
2/8, i.e., in each square Si, there

are at least nx2/2 nodes whp.
Let Mi be the event that in a square Si, there is at least one node with weight

w ≥ sn. We will specify sn later. We now derive a lower bound on the probability
Pr[Mi]. This probability is greater than the probability conditioned on the event
that there are at least nx2/2 nodes in Si, i.e.,

Pr[Mi] ≥ Pr[Mi|Vi ≥ nx2/2]Pr[Vi ≥ nx2/2]

≥ (1 − Pr[W ≤ sn]nx
2/2)(1 − e−nx

2/8)

= (1 − F (sn)nx
2/2)(1 − e−nx

2/8).

We now explain how we choose sn such that any two neighboring squares Sj
and Sj+1 are connected by an edge (i.e., there are two connected nodes a ∈ Sj
and b ∈ Sj+1). Let weights of a and b be w and w′, respectively. We showed that
in any square Si there is at least one node with weight greater than or equal
to sn, whp. We want the connectivity relation (2.1) for nodes a and b to be
satisfied. The maximal distance ‖a−b‖ between a pair of nodes is ‖a−b‖ ≤ x

√
5.

Conditioned on the events that weights w,w′ are greater then sn, we have the
following relation for the connectivity of nodes a and b:

Pr[a ∼ b|w,w′ ≥ sn] ≥ Pr[2sn/r2 ≥ θn].

Let us choose sn = Θ(x2θn). If an arbitrary pair of nodes (u, v) is connected by
a path of nodes belonging to the squares S1, S2, . . . , SO(1/x), then the following
relation on diam is satisfied:

Pr[diam = O(1/x)] ≥ Pr[∩O(1/x)
i=1 Mi] =

(
(1 − e−nx

2/8)(1 − F (sn)nx
2/2
)O(1/x)

,

since the nodes, as well as weights, are distributed independently.
We now present a lemma on the diameter.

Lemma 6.1. Let the cumulative weight distribution function be F (w) in the GTG
model. Let x and a sequence sn = Θ(x2θn) be such that

lim
n→∞

(
1 − F (sn)nx

2/2
)1/x

= 1. (6.1)

Then whp, diam = O(1/x).
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Proof. The proof follows from the previous discussion.

6.1. Some Classes of Diameter

We now analyze and state conditions on θn such that diam = O(1), diam =
O(logq n), and diam = O(

√
n/ logn). We work out the case in which the weight

distribution is exponential, f(w) = e−w, w ≥ 0 (i.e., F (w) = 1 − e−w, w ≥ 0),
and derive an upper bound on the threshold function θn in this particular case.
For some other weight distribution, the analysis would be similar. Our results
are these:

• Ultralow Latency: diam = O(1). Let x < 1 be a constant and sn =
θn. If F (θn)n → 0, then diam = O(1) whp. For the exponential weight
distribution it follows that θn = o(log n).

• Low Latency: diam = O(logq n). Let x = 1/ logq n and sn = θn/ log2q n. If
F (θn/ log2q n)n/(2 log2q n) logq n → 0, then diam = O(logq n) whp. For the
exponential weight distribution it follows that

θn = o
(
(logn)2q(1−(log2q n)/n)

)
.

• High Latency: diam = O(
√
n/ logn). Let x =

√
logn/n and sn =

θn logn/n. If
√
n/ lognF (θn logn/n)logn → 0, then diam = O(

√
n/ logn)

whp. For the exponential weight distribution it follows that

θn = o
(
(n/ logn)1−1/(2 logn)

)
.

We now prove these claims.

6.1.1. Ultralow Latency: diam = O(1). For the diameter to be a constant, let x < 1
be a constant. Invoking Lemma 6.1, it follows that diam = O(1) whp if and
only if 1 − F (sn)nx

2/2 → 1, i.e., if and only if F (sn)n → 0. The condition on
the size of diam is given by the following claim, and we can derive θn such that
diam = O(1) whp.

Claim 6.2. If F (θn)n → 0, then diam = O(1) whp.

For the exponential weight distribution it follows that F (θn)n = (1−e−θn)n →
e−n/e

θn . The last equation tends to zero if and only if n/eθn → ∞. That is, we
make the following claim.

Claim 6.3. For the exponential weight distribution f(w) = e−w, the diameter in
GTG satisfies diam = O(1) if θn = o(logn).
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6.1.2. Low Latency: diam = O(logq n). Let us choose x = 1/ logq n. Invoking
Lemma 6.1, we obtain

(1 − F (sn)nx
2/2)1/x =

(
1 − F (sn)n/(2 log2q n)

)logq n

. (6.2)

For sn → 0, the last expression tends to 1 if and only if

F (sn)n/(2 log2q n) logq n→ 0,

where we use limt→+∞(1 − 1/t)t = 1/e. The condition on the size of diam is
given by the following claim.

Claim 6.4. if F (θn/ log2q n)n/(2 log2q n) logq n→ 0, then diam = O(logq n) whp.

For the exponential weight distribution, the following is to be satisfied:

F (sn)n/(2 log2q n) logq n = logq n(1 − e−sn)n/(2 log2q n) → sn/(2 log2q n)
n logq n→ 0,

or equivalently,
sn = o

(
(logn)−

2q
n log2q n)

)
.

Claim 6.5. For the exponential weight distribution f(w) = e−w, the diameter in
GTG satisfies diam = O(logq n) if θn = o

(
(logn)2q(1−(log2q n)/n)

)
.

6.1.3. High Latency: diam = O(
√

n/ log n). Let us choose x =
√

logn/n. Invoking
Lemma 6.1, we obtain

(1 − F (sn)nx
2/2)1/x = (1 − F (sn)log n)

√
n

log n .

It can be shown, using limt→+∞(1 − 1/t)t = 1/e, that the last expression tends
to 1 if and only if

√
n/ lognF (sn)logn → 0. The condition on the size of diam

is given by the following claim.

Claim 6.6. If
√
n/ lognF (θn logn/n)logn → 0, then diam = O(

√
n/ logn) whp.

For the exponential weight distribution, the following is to be satisfied:√
n/ lognF (sn)logn =

√
n/ logn(1 − e−sn)log n →

√
n/ lognsnlogn → 0,

or equivalently,
sn = o

(
(log n/n)1/(2 logn)

)
.
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Figure 3. (a) For the case of diam = O(logq n), with q = 1.5, the analytical solid
curve is the upper bound on diam(n). Simulation results match with theoretical
predictions, since the simulation points all lie below the analytical curve. (b)
For the case of diam = O(

√
n/ log n), the solid curve plots the upper bound on

diam(n), and this bound closely matches the experimental values.

Claim 6.7. For the exponential weight distribution f(w) = e−w, the diameter in
GTG satisfies

diam = O(
√
n/ logn) if θn = o

(
(n/ logn)1−1/(2 logn)

)
.

Simulation results are shown for the GTG with path-loss exponent β = 3
(not β = 2) for the case of diam = O(log1.5 n) in Figure 3(a) and diam =
O(
√
n/ logn) in Figure 3(b). Exponentially distributed weights with mean 1

are used. The network sizes simulated are n = {100, 200, 500, 1000, 2000, 10000}.
The threshold values θn for the two cases are obtained by invoking previous
claims.

7. Clustering Coefficient

7.1. Weights Given

Let us consider in more detail the clustering coefficient defined in Section 5,
namely the neighbor probability

C(wi, wj , wk) = Pr[vi ∼ vj |vi ∼ vk, vj ∼ vk, wi, wj , wk].

Let x =
√

(wi + wj)/θn, y =
√

(wj + wk)/θn, and z =
√

(wi + wk)/θn. Then
if dij represents the distance between points i and j, we have
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C(wi, wj , wk) = Pr[dij ≤ x|djk ≤ y, dik ≤ z]

=
1
πz2

∫ z

0

Pr[dij ≤ x|djk ≤ y, dik = r] 2πr dr

=
1

π2y2z2

∫ z

0

A(r)2πr dr,

where A(r) is the overlap area of a disk of radius x centered at i and a disk
of radius y centered at k. Now consider a triangle �IJK, with sides IJ = r,
IK = x, JK = y, and ∠JKI = η, ∠IJK = ξ. Following arguments similar to
those in [Dall and Christensen 02], there are three possible cases for A(r):

A(r) =

⎧⎪⎨
⎪⎩
π[min(x, y)]2 if r ≤ |x− y|,
x2(η − sin η cos η) + y2(ξ − sin ξ cos ξ) if |x− y| < r < x+ y,

0 if r ≥ x+ y,

where

η = cos−1

(
r2 + x2 − y2

2xr

)
,

ξ = cos−1

(
r2 − x2 + y2

2yr

)
.

From the definitions of x, y, and z, we have |x − y| < z < x + y. After some
algebraic manipulation, one then obtains

C =
x2

π

[
1
y2

cos−1

(
z2 + x2 − y2

2xz

)
+

1
x2

cos−1

(
z2 − x2 + y2

2yz

)

+
1
z2

cos−1

(
x2 + y2 − z2

2xy

)

− x2 + y2 + z2

4x2y2z2

√
2x2y2 + 2x2z2 + 2y2z2 − x4 − y4 − z4

]

=
1

π(wi + wk)(wj + wk)

×
{

(wi + wj)(wi + wk) cos−1

(
wi√

wi + wj
√
wi + wk

)

+ (wi + wj)(wj + wk) cos−1

(
wj√

wi + wj
√
wj + wk

)

+ (wi + wk)(wj + wk) cos−1

(
wk√

wi + wk
√
wi + wk

)

− (wi + wj + wk)
√
wiwj + wjwk + wkwi

}
.
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Note that while C is a function of the weights wi, wj , and wk, it is independent
of θn. This reflects a similar property in random geometric graphs [Dall and
Christensen 02], where the clustering coefficient is independent of the graph’s
mean degree.

In terms of the connection probabilities a, b, and c defined in Theorem 5.2,
x =

√
a/π, y =

√
b/π, and z =

√
c/π. Then, C is given by

Cπbc = ab cos−1 a+ b− c

2
√
ab

+ bc cos−1 −a+ b+ c

2
√
bc

+ ca cos−1 a− b+ c

2
√
ac

− a+ b+ c

4

√
2ab+ 2ac+ 2ca− a2 − b2 − c2.

We now prove the bound on the clustering coefficient that we needed for
Theorem 5.2.

Lemma 7.1. If wi, wj , wk ≤ ŵ = (1 − 3
√

3/4π)θn/2π, then C ≥ a.

Proof. Define

S(a, b, c) =
Cπ

a

=
1
a

cos−1 −a+ b+ c

2
√
bc

+
1
b

cos−1 a− b+ c

2
√
ac

+
1
c

cos−1 a+ b− c

2
√
ab

− γ
a+ b + c

4abc
,

where

γ =
√

2ab+ 2ac+ 2ca− a2 − b2 − c2 = 2
√
bc

√
1 −

(−a+ b+ c

2
√
bc

)2

.

It is easy to verify that S = π when wi = wj = wk = ŵ. We will now show
that S is nonincreasing over the weights, and thus S ≥ π for all smaller values
of wi, wj , wk.

Consider the sign of the derivative

dS

dwi
=
∂S

∂a

∂a

∂wi
+
∂S

∂b

∂b

∂wi
+
∂S

∂c

∂c

∂wi
=

π

θn

(∂S
∂a

+
∂S

∂b

)
.

Since S is symmetric in a and b, it is sufficient to consider the sign of ∂S/∂a:

∂S

∂a
=

γ

4a2bc
(−a+ b+ c) − 1

a2
cos−1 −a+ b+ c

2
√
bc

.

Now let
t =

−a+ b+ c

2
√
bc

∈ [0, 1].
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Then
∂S

∂a
=

1
a2

(
t
√

1 − t2 − cos−1 t
)
.

Given the function ϕ(t) = t
√

1 − t2−cos−1 t on [0, 1], we have ϕ′(t) = 2
√

1 − t2 ≥
0, and ϕ(1) = 0. It follows that ∂S/∂a ≤ 0, and so dS/dwi ≤ 0. Finally, S is
symmetric in (wi, wj , wk), so it must be nonincreasing over each of the weights
and bounded below by the value at wi = wj = wk = ŵ.

7.2. Degree Given

Define Cl to be the neighbor probability for a node with a given degree:

Cl = Pr[vi ∼ vj |vi ∼ vk, vj ∼ vk, d(vk) = l]

=
Pr[vi ∼ vj , vi ∼ vk, vj ∼ vk, d(vk) = l]

Pr[vi ∼ vk, vj ∼ vk, d(vk) = l]

=
∫
f(w)Pr[vi ∼ vj , vi ∼ vk, vj ∼ vk, d(vk) = l|w]dw∫

f(w)Pr[vi ∼ vk, vj ∼ vk, d(vk) = l|w]dw
.

A straightforward calculation shows that Cl is given by the ratio In/Id of two
integrals, where

Id =
∫
f(wk)

( π
θn

(μ+ wk)
)l(

1 − π

θn
(μ+ wk)

)n−l
dwk

and

In =
∫∫∫

f(wi)f(wj)f(wk)πy2πz2C(wi, wj , wk)dwi dwj

×
( π
θn

(μ+ wk)
)l−2(

1 − π

θn
(μ+ wk)

)n−l
dwk

=
∫∫∫

f(wi)f(wj)f(wk)(wi + wk)(wj + wk)C(wi, wj , wk)dwi dwj

× 1
(μ+ wk)2

( π
θn

(μ+ wk)
)l(

1 − π

θn
(μ+ wk)

)n−l
dwk

For a specific weight distribution, these integrals may be evaluated numerically.
It is intuitive that when l is very large (l = Θ(n)), Cl should scale as 1/n: nodes
that connect to very many neighbors presumably do so because of their high
weights, and their neighbors are no more likely to be connected than any two
random nodes are. Interestingly, in the case shown in Figure 4, Cl scales almost
perfectly as l−1 even at relatively small values of l. For an exponential weight
distribution with mean 1 and parameters n = 1000 and θn = 1000, the slope on
the log-log plot already appears very close to −1 at l = 8.
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Figure 4. Clustering coefficient vs. degree L.

8. Summary

Geographical threshold graphs are a rich model with the possibility of control-
ling structural properties by choosing specific weight distributions and tuning
threshold values. The model is a versatile one and can be used for the genera-
tion and analysis not only of web graphs or large complex networks, but more
generally of relation graphs in a large data set. If the data have a metric and can
be mapped to nodes in Euclidean space, much of the foregoing analysis applies:
one may hope to control structural properties of the data set by studying it as
a GTG.

In this paper we have analyzed some of the structural properties of a GTG.
Given a node weight distribution f(w) and threshold θn, the degree distribution
can be easily calculated.

We have given bounds on the threshold value θn guaranteeing the absence or
existence of the giant component. We have also given bounds on θn guaranteeing
a disconnected or connected graph, and provided upper bounds on the diameter
for sufficiently dense graphs.

Finally, we have derived a formula for the clustering coefficient in terms of
the weight distribution and threshold, as well as discussed the general clus-
tering coefficient for nodes with a given degree, and evaluated it numerically.
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Our analysis has used the additive threshold function (wi + wj)/r2 ≥ θn for
the connectivity relation, but not all of our techniques require it. For this
reason, many of the results may be generalized to other threshold functions,
other path-loss exponents, and other spatial dimensionalities in a straightforward
manner.
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Bradonjić et al.: The Structure of Geographical Threshold Graphs 139

[Molloy and Reed 95] M. Molloy and B. Reed. “A Critical Point for Random Graphs
with a Given Degree Sequence.” In Proceedings of the Sixth International Seminar on
Random Graphs and Probabilistic Methods in Combinatorics and Computer Science,
pp. 161–179. New York: John Wiley & Sons, Inc., 1995.

[Penrose 03] Mathew D. Penrose. Random Geometric Graphs. Oxford: Oxford Univer-
sity Press, 2003.
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